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a b s t r a c t

Downhole arrays are deployed to measure motions at the ground surface and within the soil profile, with
some arrays instrumented to also record the pore pressure response within soft soil profiles during
excitation. The measurements from these arrays have typically been used in conjunction with parametric
and nonparametric inverse analysis approaches to identify soil constitutive model parameters for use in
site response analysis or to identify averaged soil behavior between locations of measurement. The self-
learning simulations (SelfSim) inverse analysis framework, previously developed and applied under total
stress conditions, is extended to effective stress considerations and is employed to reproduce the
measured motions and pore pressures from downhole arrays while extracting the underlying soil
behavior and pore pressure response of individual soil layers. SelfSim is applied to the 1987 recordings
from the Imperial Valley Wildlife Liquefaction Array. The extracted soil behavior suggests a new
functional form for modeling the degradation of the shear modulus with respect to excess pore
pressures. The extracted pore pressure response is dependent on the number and amplitude of shear
strain cycles and has a functional form similar to current strain-based pore pressure generation models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding of local site conditions is necessary not only for
seismic design, but also for interpretation of recorded ground
motions at a site. Strong motion records from many earthquakes
(e.g., 1957 San Francisco Earthquake, 1989 Loma Prieta Earthquake,
and 1999 Chi-Chi earthquake) show significant differences between
soil sites and nearby rock sites response. The 1985 Mexico City
earthquake showed for the first time that soft soils can amplify
weak ground motions and result in significant damage even at large
distances from the earthquake source.

Site response analysis models are used to evaluate site response
to strong ground shaking in terms of acceleration, velocity and
displacement at ground surface and within the soil profile. The
applicability of these models highly depends on both the repre-
sentation of cyclic soil behavior and pore pressure response.
Laboratory tests are often used to measure dynamic soil behavior
and pore pressure response which is then used to develop cyclic
soil constitutive and pore pressure response models for site

response analysis. However, the loading paths from laboratory
tests can be significantly different from those experienced by the
soil in the field and are not necessarily representative of antici-
pated response.

Significant investments in downhole arrays have been and con-
tinue to be made to measure motions at the ground surface and
within the soil profile, with additional pore pressure data measured
throughout the same profile in some arrays. These arrays provide the
real data necessary to better understand local site effects, in situ
dynamic soil behavior and pore pressure response under earthquake
loading.

Inverse analysis techniques have been applied to downhole array
data to identify soil behavior via a variety of system identification
procedures. Zeghal et al. [36] used a linear interpolation approach to
estimate shear stress and shear strain seismic histories from down-
hole arrays via a nonparametric system identification procedure.
Reduction of the stiffness of the soil at large strains and large excess
pore pressures was identified, but the soil behavior identified by this
method only represents averaged behavior between two points of
measurements. Parametric system identification approaches such as
the time–domain method [12] and the frequency domain method
[8,17] have proven successful in providing better estimates of the
soil dynamic properties, but are still limited in their capability of
identifying soil behavior or in their implementation into a material
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constitutive model for use in future site response analysis. Although
current approaches provide important insights from field observa-
tions, they do not fully benefit from these observations.

Downhole array data has similarly been used to find correla-
tions in pore pressure response of soils, as well as to provide a
check on the validity of site response analysis models. Using data
obtained from the Lotung downhole array, Davis and Berrill [7]
obtained good agreement between measured and calculated
values of pore pressures via correlation of dissipated energy
densities. Matasovic [25] evaluated the D-MOD site response
analysis program and implemented cyclic-strain-based pore pres-
sure generation model using data from the Imperial Valley Wild-
life Liquefaction Array for comparison.

Tsai [29] and Tsai and Hashash [31] introduced a new self-
learning inverse analysis algorithm, SelfSim, for total stress site
response analysis. They applied the algorithm to synthetically
generated data as well as field arrays from the Lotung and La
Cienega arrays. Tsai and Hashash [31] showed that SelfSim applied
to total stress site response analysis can learn and extract soil
behavior from recorded events such as degradation of soil stiffness
with increasing shear strain. Learning from multiple events was
required to learn nonlinear soil behavior over a wide range of
shear strains and to improve prediction of soil response in other
events.

Groholski and Hashash [15] extended the SelfSim framework to
effective-stress considerations and further applied the expanded
algorithm to synthetically generated data. Groholski and Hashash
[15] showed that the extended SelfSim framework applied to
effective-stress site response analysis can learn and extract both
soil behavior and pore pressure response from recorded motions
and pore pressures during seismic events. Learning from multiple
events was required to learn nonlinear soil behavior and pore
pressure response over a wide range of shear strain and various
levels of excess pore pressures. This paper applies the extended
SelfSim algorithm to the 1987 recorded events from the Imperial
Valley, California Wildlife Liquefaction Array. The results will
demonstrate that SelfSim is able to learn significant characteristics
of soil behavior and pore pressure response including shear

modulus reduction and damping increase with increasing shear
strain, the effect of increasing excess pore pressures on shear
modulus degradation, and the nature of excess pore pressure
generation with respect to shear strains without the need to
specify nonlinear soil parameters.

2. Self-learning simulations (SelfSim) applied to 1-D seismic
site response – effective-stress consideration

The SelfSim methodology is an extension of the autoprogressive
algorithm originally proposed by Ghaboussi et al. [10]. With the use
of a continuously evolving neural network (NN) based material
model, the autoprogressive method is used to extract stress–strain
material behavior using global load and deflection measurements.
SelfSim has previously been implemented for static laboratory tests
[26,28], deep excavations [19], and one-dimensional (1-D) seismic
site response under total stress consideration [30,31]. Groholski and
Hashash [15] extended the application of SelfSim to 1-D seismic
site response under effective-stress consideration using syntheti-
cally generated downhole array data of motions and excess pore
pressures.

Fig. 1 illustrates the application of the SelfSim framework to
downhole array measurements of ground motions and pore
pressure response. In Step 1, a downhole array measures the
accelerations and pore pressures at selected locations in a profile
as seismic waves propagate through a soil column. The deepest
recorded motion in the profile is treated as the input base
excitation for the overlying soil layers. The input base excitation
and corresponding recorded motions within the soil profile
represent complementary sets of field observations.

In Step 2, SelfSim uses these measurements to extract the
underlying dynamic soil behavior by performing two complemen-
tary site response analyses. SelfSim first uses the base excitation
and measured pore pressures to conduct an analysis where force
boundary conditions are imposed (Step 2a). The measured
motions within the soil profile are imposed as a displacement
boundary condition in a parallel analysis, Step 2b. In these
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Fig. 1. SelfSim inverse analysis algorithm applied to vertical array with pore pressure measurements. O represents acceleration measurements, and Δ represents pore water
pressure measurements.
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