
Vertical and horizontal vibrations of a rigid disc on a multilayered
transversely isotropic half-space

Morteza Eskandari-Ghadi a,n, Seyed Masoud Nabizadeh b, Azizollah Ardeshir-Behrestaghi b

a School of Civil Engineering, College of Engineering, University of Tehran, P.O.Box 11165-4563, Tehran, Iran
b Department of Civil Engineering, Mazandaran University of Science and Technology, Babol, Iran

a r t i c l e i n f o

Article history:
Received 27 January 2014
Accepted 30 January 2014
Available online 6 March 2014

Keywords:
Transversely isotropic
Multilayered half-space
Rigid disc
Dual integral equations
Impedance functions
Soil-structure-interaction

a b s t r a c t

A half-space containing horizontally multilayered regions of different transversely isotropic elastic
materials as well as a homogeneous half-space as the lowest layer is considered such that the axes of
material symmetries of different layers and the lowest half-space to be as depth-wise. A rigid circular
disc rested on the free surface of the whole half-space is considered to be under a forced either vertical or
horizontal vibration of constant amplitudes. Because of the involved integral transforms, the mixed
boundary value problems due to mixed condition at the surface of the half-space are changed to some
dual integral equations, which are reduced to Fredholm integral equations of second kind. With the help
of contour integration, the governing Fredholm integral equations are numerically solved. Some
numerical evaluations are given for different combinations of transversely isotropic layers to show the
effect of degree of anisotropy of different layers on the response of the inhomogeneous half-space.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Forced vibration of an elastic isotropic or orthotropic medium,
which may be due to vibration of a surface or buried rigid plate is
very interesting in mathematical theory of elasticity and its
applications. Because of rigidity of the plate, the related boundary
value problem is a mixed boundary value problem, which is
interesting for mathematicians. The analysis is useful for under-
standing the mechanics of the interaction of foundations and the
supporting soil under external load, and also in analysis of matrix
containing flat inclusions. There are some research works in this
area for both static and dynamic cases, which are useful to be
mentioned [1–3]. In addition, because of the application of layered
media many investigators have examined the boundary value
problems in multilayered elastic materials [7]. On the other hand,
the physical behavior of the soil beneath a foundation is not
identically isotropic, and thus analytical treatment of the problem
of a rigid disc associated with an anisotropic medium is needed.
Because of the direction of gravity the transversely isotropic
behavior is the most common applicable medium among the
different anisotropic one for the soil. Eskandari-Ghadi [8] intro-
duced a complete set of scalar potential functions for the elasto-
dynamic problems related to transversely isotropic axially convex

domain. With the use of these potential functions, Eskandari-
Ghadi et al. [9] have studied the axisymmetric vertical forced
vibration of a rigid circular disc rested on a transversely isotropic
homogeneous half-space, where they have shown a singular
behavior for the pressure in between the disc and the half-space.

It is the purpose of this paper to investigate forced either
vertical or horizontal vibration of a rigid circular disc rested in the
relaxed form on the top of a transversely isotropic multilayered
half-space.

2. Boundary-value problem and its solution

A half-space containing horizontally multilayered regions of
different transversely isotropic elastic materials is considered
(Fig. 1). The axes of material symmetry of different layers and
the lowest half-space are assumed to be depth-wise. A massless
rigid disc of radius a is considered to be attached on the top of the
media. As indicated in Fig. 1, a cylindrical coordinate system
fO; x¼ ðr; θ; zÞg is attached to the domain of the problem. As a
reference, the first layer, the second layer, …, and the lowest
half-space are referred to as Region 1 ð0ozoh1Þ, Region 2
ðh1ozoh2Þ, …, and Region ðnþ1Þðz4hnÞ, respectively. The beha-
vior of a transversely isotropic material is completely described by
five independent elastic constants A11; A12; A13; A33 and A44 [10].
Usually, a dependent elasticity constant denoted asA66 ¼
ðA11�A12Þ=2 is used to make the constitutive law for transversely
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isotropic material to be written simpler. These elastic constants
may be related to the engineering constants E, E0, υ, υ0, G and G0 as
indicated in [10]. A prescribed mono-harmonic vibration either
vertical or horizontal in the form of Δveiωt or Δheiωt is considered
for the disc, where Δv and Δh are the amplitudes of the vertical and
horizontal movements and ω is the circular frequency of the
motion. Writing the time-harmonic equations of motion in terms
of displacements in each region as in [11] and utilizing the scalar
potential functions F and χ, the solutions for the potential func-
tions in the jth layer are (see [11,12]):

Fmj ðξ; zÞ ¼ Am
j ðξÞe� λj;1zþBm

j ðξÞe� λj;2zþ Cm
j ðξÞeλj;1zþDm

j ðξÞeλj;2z;
χmj ðξ; zÞ ¼ Gm

j ðξÞe� λj;3zþHm
j ðξÞeλj;3z; janþ1

8<
:
Fmj ðξ; zÞ ¼ Am

j ðξÞe� λj;1zþ Bm
j ðξÞe� λj;2z;

χmj ðξ; zÞ ¼ Gm
j ðξÞe� λj;3z; j¼ nþ1

8<
: ð1Þ

Am
j ðξÞ to Hm

j ðξÞ, and Am
nþ1ðξÞ, Bm

nþ1ðξÞ and Gm
nþ1ðξÞ in Eq. (1) are

unknown functions which appeared due to integration. The
continuity conditions and a relaxed treatment (see [1, 2]) of the
boundary conditions can be stated as follows:

sjþ1;rzðr; θ; zþj Þ�sj;rzðr; θ; z�j Þ ¼ 0; sjþ1;zθðr; θ; zþj Þ�sj;zθðr; θ; z�j Þ ¼ 0;

sjþ1;zzðr; θ; zþj Þ�sj;zzðr; θ; z�j Þ ¼ 0; ujþ1ðr; θ; zþj Þ�ujðr; θ; z�j Þ ¼ 0;

vjþ1ðr; θ; zþj Þ�vjðr; θ; z�j Þ ¼ 0; wjþ1ðr; θ; zþj Þ�wjðr; θ; z�j Þ ¼ 0; ð2Þ

for rZ0 and 0rθo2π, and

s1;rzðr; θ; z¼ 0Þ ¼ �Pðr; θÞ; s1;zθðr; θ; z¼ 0Þ ¼ �Q ðr; θÞ;
s1;zzðr; θ; z¼ 0Þ ¼ �Rðr; θÞ;
s1;rzðr; θ; z¼ 0Þ ¼ s1;zθðr; θ; z¼ 0Þ ¼s1;zzðr; θ; z¼ 0Þ ¼ 0;
u1ðr; θ; z¼ 0Þ ¼ Δh cos θ; v1ðr; θ; z¼ 0Þ ¼ �Δh sin θ;

w1ðr; θ; z¼ 0Þ ¼ Δv; ð3Þ
for roa and 0rθo2π.

For simplicity, we define the vector xm
j for the jth layer as

where the superscript T shows the transpose of the matrix. As
seen in (4), the vector xm is given in Fourier–Hankel transformed
space. In this way, one may write this vector at z¼ 0 as

xm
1 ðξ; z¼ 0Þ ¼ umþ1

m þ ivmþ1
m um�1

m � ivm�1
m wm

m �Ym �Xm �Zm

n oT

1
; ð5Þ

where Xm ¼ Pm�1
m � iQm�1

m ;Ym ¼ Pmþ1
m þ iQmþ1

m ; and Zm ¼ Rm
m. The

boundary conditions (3) imply that X1 ¼ Y �1; X�1 ¼ Y1;

Xm ¼ Ym ¼ 0 for ma71 and Zm ¼ 0 for ma0. With the use of
displacement- and stress-potential function relationships, the
matrix xm may be written as

xm
j ¼Mjðξ; zÞ Am Bm Cm Dm Gm Hm� �T

j ; ð6Þ

where Mjðξ; zÞ is a 6� 6 matrix. Thus, the vector x for the top
and the bottom of the jth-layer can be written as xm

j;top ¼
Mjðξ; zj;topÞ AmBmCmDmGmHm� �T

j and xm
j;bot ¼Mjðξ; zj;botÞ AmBmCmDmGmHm� �T

j .

By substituting the vector Am Bm Cm Dm Gm Hm� �
jT from

xm
j;bot into xm

j;top, the vector xm
j;top is determined in terms of xm

j;bot as

xm
j;top ¼ Tjxm

j;botwhere Tj ¼Mjðξ; zj;topÞM�1
j ðξ; zj;botÞ is the jth-layer

transfer matrix connecting the variables at the top to the bottom.
With the use of T and the continuity conditions xm

j;bot ¼ xm
jþ1;top,

one may write

xm
1;top ¼ T1 ::: Tn xm

nþ1;top ð7Þ
Substituting xm

1;top and xm
nþ1;top, respectively from Eqs. (5) and (6)

into Eq. (7) results in

umþ1
m þ ivmþ1

m um�1
m � ivm�1

m wm
m �Ym �Xm �Zm

n oT

1
¼

ðT1:::TnMnþ1ðξ; znþ1;topÞÞ Am Bm 0 0 Gm 0
� �T

nþ1; ð8Þ

where because of the regularity conditions, the coefficients Cm,
Dmand Hm for the lowest half-space are set as zero. Solving this
equation results in

Am
nþ1 ¼

D11ðXm�YmÞþD13Zm

D
; Bm

nþ1 ¼
D21ðXm�YmÞþD23Zm

D
;

Gm
nþ1 ¼

D31ðXmþYmÞ
D

; ð9Þ

where D11 ¼ �G45G62; D12 ¼ �D11; D13 ¼ 2G45G52; D21 ¼

G45G61;D22 ¼ �D21; D23 ¼ 2G41G55; D31 ¼ ðG41G62�G42G61Þ;
D32 ¼D31; D¼ 2G42G45G61; and Gij ¼ ½T1:::TnðMnþ1ðξ; znþ1;topÞÞ�ij:

It is clear from this equation that D should be non-zero. Then,
using xm

j;topandx
m
j;bot and the continuity conditions xm

j;bot ¼ xm
jþ1;top,

one can write the following relationship between the coefficients

Fig. 1. Multilayered transversely isotropic half-space under a forced (a) vertical, and (b) horizontal excitation.

xm
j ðξ; zÞ ¼ umþ1

m þ ivmþ1
m um�1

m � ivm�1
m wm

m smþ1
rzm þ ismþ1

θzm sm�1
rzm � ism�1

θzm sm
zzm

n oT

j
; ð4Þ
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