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a b s t r a c t

Time-domain formulations for soil–structure interaction problems with an unbounded soil-domain (the
so-called far-field) including wave propagation require such time-domain formulations for both parts,
soil and structure. For the structure (the near-field), typically treated by a finite element approach, the
time-domain is used from the very beginning of the procedure. However, for the unbounded soil a
representation by means of a frequency-dependent dynamic stiffness is usually available and it becomes
necessary to devise techniques for switching from the frequency- to the time-domain.

For various special cases in solid mechanics (e.g. plane, cylindrical and spherical waves) one-
dimensional formulations in space have been used to derive scalar dynamical stiffness, to establish
corresponding rational functions in the frequency-domain and transfer them into the time-domain in
order to couple the near- and the far-field.

A complete three-dimensional analysis for pile-groups through a linear homogeneous unbounded
soil-domain and the corresponding description in the time-domain have already been treated by Cazzani
and Ruge (2012, 2013) by means of a fully matrix-valued rational representation of a set of dynamic
stiffness matrices KðΩÞ, as a function of the angular frequency Ω. However, the symmetry of the input
stiffness KðΩÞ has not been maintained for the corresponding representation in the time-domain.

This paper presents a fully matrix-valued rational formulation which does transfer the symmetry of
KðΩÞ to the corresponding formulation in the time-domain. Thus, the numerical treatment of the whole
soil–structure interaction problem, coupling the far-field and near-field systems, can take advantage of
algorithms for symmetric algebraic problems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of transient processes in the time-domain for
unbounded space-domains like soil including a consistent description
of wave-propagation is still a challenge, though it has been the subject
of research for more than 30 years. A rather comprehensive report on
the state of the art up to year 2011 has been presented by Birk [1].
A recently published paper [2] by the authors contains a selection of
some typical and essential contributions.

For bounded fields in the space domain the finite element method
is well-established in Computational Engineering. For unbounded
domains the finite concept has been further developed towards
infinite elements with special frequency-dependent shape functions
[3,4] which establish the so-called transient wave envelope concept

including an inverse Fourier transform. This procedure is rather
popular in acoustics.

Whereas today in Structural Engineering especially two meth-
ods modeling the unbounded domain are used for soil–structure
interaction problems: the Boundary Element Method [5] in a
symmetric version [6,7] and the Scaled Boundary Element method
[8] with several improvements; some of them are mentioned in
[9]. Both methods end up with frequency dependent symmetric
dynamic stiffness matrices and suitable procedures have to be
developed to change over to the time-domain. One approach,
which is shown in detail in [10], requires the associated unit-
impulse response matrix by means of an inverse Fourier transfor-
mation, followed by the evaluation of a convolution integral.
However, this process is temporally nonlocal and, thus, numeri-
cally complicated.

A temporally local procedure for coupling an unbounded soil
domain with a bounded structure modeled by classical finite
elements in the time-domain starts with a boundary condition
fc ¼KcðΩÞuc in the interface with a pair of nodal interface-forces
ðfc; �fcÞ and the interface-displacements uc. The dynamic stiffness
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matrix KcðΩÞ, sometimes called DtN-maps [11], depends on the
angular frequency Ω. To describe the whole coupled problem in
the time-domain and to find solutions for arbitrary excitations, the
frequency-domain DtN-mapping has to be cast into the time-
domain.

This task has been elaborated and introduced by Wolf [12] for
the treatment of soil–structure interaction problems by replacing a
set of scalar dynamic stiffness coefficients by a frequency-
dependent rational function f c ¼ ðP=Q Þuc with scalar polynomials
PðΩÞ and Q ðΩÞ, which can be reduced to a linear system in the
frequency-domain and thus to a system of ordinary differential
equations (ODEs): A _z�Bz¼ 0 in the time-domain. In system-
theory, this is a classical, well established approach, and is
described in textbooks like [13].

However, for dynamic stiffness matrices with several physical
degrees-of-freedom (DOFs) in the interface between the
unbounded and the bounded domain, matrices A and B describing
the system of ODEs become unsymmetric for a full matrix-valued
rational approximation Q ðΩÞfc ¼ PðΩÞuc , with the corresponding
dynamic stiffness matrix KcðΩÞ ¼Q �1P as it has been shown in
some previous papers like [14,15].

Here P and Q are matrix-valued polynomials depending on the
angular frequency Ω. If the interface between structure and soil is
given by a rigid foundation-plate, KcðΩÞ is a 6�6 matrix corre-
sponding to three translational and three rotational DOFs.

Thus, when coupling the two fields, soil and structure, the
whole algebraic representation becomes a non-symmetric one:
there is no more benefit from the symmetry related to the finite
element model of the structure which typically dominates the
problem by its hundreds of DOFs.

However, symmetry is a fundamental quality in Natural- and
Engineering Sciences and if systems are characterized by symme-
try their algebraic representation should reflect this property by
means of symmetric matrices. Compared with non-symmetric
matrices, they need only roughly half of the storage, the numerical
tools for solving symmetric algebraic equations are more robust
and the amount of arithmetic operations is much less.

Thus preserving symmetry — if there is any — is of the utmost
importance for an effective formulation of a physical problem.

A compromise in describing the DtN-maps by using only a
scalar formulation Q ðΩÞ instead of the matrix-valued one, Q ðΩÞ,
for the force-side, Q ðΩÞfc ¼ PðΩÞuc with the corresponding stiff-
ness matrix

KcðΩÞ ¼Q �1P¼ PQ �1 ¼ P
Q

gives unequal weights to the nodal quantities fc and uc (which, in
principle, have equal importance) but, on the other hand, results in
symmetric system matrices A and B [16].

Here a symmetric representation in the time-domain will be
presented which includes matrix-valued operators for both
mechanical quantities; nodal forces and displacements.

The paper is organized as follows: in Section 2 the standard
formulation of a typical multi-DOFs structural dynamics problem
which is ruled by a system of second-order ODEs is considered,
and it is shown that it can be transformed, by preserving
symmetry of governing matrices, into a system of first-order ODEs
of twice its size. In Section 3, the soil–structure coupled problem is
considered and the frequency-to-time transformation, as it has
been elaborated in [14,15] will be recalled, showing its essential
steps. Then the rational representation KðΩÞ ¼Q �1P used in the
previous papers is combined with the conjugate formulation
KðΩÞ ¼ ~P ~Q

�1
.

Combining the conjugate pair KðΩÞ ¼Q �1P and KðΩÞ ¼ ~P ~Q
�1

together in one common state equation results in symmetric state
matrices A and B, as it will be shown in Section 4.

In Section 5 the new symmetric representation is used to solve
a soil–rotor foundation interaction problem with a transient
excitation which has been already treated by the non-symmetric
formulation in [17]. The results are compared and several aspects
concerning the sensitivity of the linear algebraic solvers used and
their accuracy in combination with the machine precision are
discussed in detail.

2. Alternate formulations of the structural dynamics problem

As it has been mentioned already, the DtN-maps fc ¼KcðΩÞuc

in the coupling interface can be replaced by a system of ODEs in
the time-domain A _z�Bz¼ rc , where the coupling force fc is a part
of the right-hand side rc . In order to organize the coupling of this
system of first order ODEs with the finite element model of the
bounded structure it is advantageous to formulate its equation of
motion as a set of first order ODEs, too.

In structural dynamics the standard form of the governing
equation for system described by m physical DOFs is:

M €xþD _xþCx¼ FðtÞ; ð1Þ
i.e. a set of m second-order ODEs where M, D, C are respectively
the mass, damping and elastic stiffness matrices (all of them being
symmetric ones), while x, _x , €x , F are respectively (possibly
generalized) displacements, velocities, accelerations and time-
dependent external forces corresponding to the physical DOFs.

This form (1) is suitable for modal analysis and even for time
integration provided that matrix D can be diagonalized by the
same transformation which diagonalizes both M and C: in such a
case a system of m decoupled second order ODEs in terms of
principal coordinates is obtained and the solution, at least
numerically, if F exhibits a complicated time dependence, can be
easily computed.

It can be shown that this requirement is satisfied when D is
proportional to M (mass damping) or to C (stiffness damping) or to a
combination of both; alternatively D might be defined as a diagonal
matrix in the space of principal coordinates (modal damping) and then
back transformed into the space of physical DOFs.

In all other cases it is more useful switching from (1) to a
formulation where the governing equation is expressed as a 2m
system of first-order ODEs: this is easily accomplished by introdu-
cing a new set of variables, y, defined as

y� _x ¼ 0; ð2Þ
where 0 is a null vector having m rows.

By introducing (2) — which corresponds to assuming velocities
as independent variables — into (1) and rearranging the terms the
following two alternate forms can be obtained

M O
O �I

� �
_y
_x

� �
þ D C

I O

� �
y
x

� �
¼ F

0

� �
; ð3Þ

M D
O �I

� �
_y
_x

� �
þ O C

I O

� �
y
x

� �
¼ F

0

� �
; ð4Þ

where O and I are, respectively, a square m�m null matrix and
the m-th order identity matrix. Of these two forms the latter one
(4) cannot be easily put into a symmetric form, while this is
possible for the former one (3) provided that the lower partition is
pre-multiplied by C:

M O
O �C

� �
_y
_x

� �
þ D C

C O

� �
y
x

� �
¼ F

0

� �
: ð5Þ

Moreover, if z denotes a 2m vector collecting the state variables
(y, x), i.e. zT ¼ ½yT xT �, and, similarly, external forces are written as
fT ¼ ½FT 0T �, then (5) can be synthetically written as
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