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a b s t r a c t

A model for studying the propagation of compressional and shear waves in partially saturated soils is
presented. The pores are filled with two immiscible fluids and the existence of four different wave modes
including three compressional waves and one shear wave is demonstrated. The novel feature of the
model is the consideration of tortuosity of fluid phases which are dependent on matric suction. The
dispersion relations derived from the presented model are incorporated to study the influence of fluid
saturation degree and frequency on the velocity and intrinsic attenuation of shear and compressional
waves. Numerical simulations are performed on sand containing air–water mixture.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A porous medium is composed of a matrix (skeleton) formed
by solid particles and a porous space which can be filled by a single
or several fluids (e.g. water, air, oil). Wave propagation phenomena
in such media are investigated by several fields including seismol-
ogy, geotechnics, geophysics and earthquake engineering. In all
these fields of study, it is important to correctly predict and
understand how the behavior of wave attributes like velocity
and attenuation are affected by changes in characteristics of
porous geomaterials.

Using the fundamentals of transport in porous media, Biot [1–3]
developed the theory of wave propagation in porous media
saturated only by a single compressible viscous fluid. Biot theory
predicted the existence of three wave modes including two
compressional and one shear wave. Biot's theory was widely used
by the researchers in different fields [4–6] and various extensions
to this theory were afterward proposed [7–10]. Brutsaert [11]
extended the Lagrangian equations of Biot theory to account them
for wave propagation in porous media containing two compres-
sible fluids in their interstice. He showed that three compressional
waves can theoretically exist in such media. However, relative
acceleration between fluid phases and solid skeleton which causes

inertial coupling was neglected in his study. Berryman [12]
considered inertial coupling effects and generalized equations of
motions to higher frequency range. However, he assumed capillary
pressure changes are negligible during the passage of waves
through a partially saturated medium. Santos et al. [13,14] used
the principle of virtual complementary work and were first to
obtain equations of motion for partially saturated porous media,
including both capillary pressure and inertial effects. Further
remarkable studies were carried out by Tuncay and Corapcioglu
[15] who obtained macroscopic equations by volume averaging
the microscale balance and constitutive equations and also Wei
and Muraleetharan [16] who employed the mixture theory.

Despite all these achievements, a model that can consider the
tortuosity of each fluid phase is not present. When a fluid flows
through a porous medium, fluid particles follow a path with full of
twists and turns. To describe this so called tortuous path, Carman
[17] defined a parameter called tortuosity. When two immiscible
fluids flow through a porous medium, each fluid follows a separate
and distinct path. The distribution of fluids depends mainly on
capillary pressure, viscous stresses on the interfaces and morphol-
ogy of the pore spaces [18,19]. The direction of acceleration of each
fluid may differ from the macroscopic acceleration direction due to
the fact that tortuosity exists and tortuous path for each fluid
phase is different. Considering this effect will lead to more realistic
incorporation of inertial coupling mechanism between the pore
fluids and the solid movements [20,21]. Therefore, the need for
developing the wave motion equations capable of considering
each phase tortuosity is necessary. The present study addresses
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this problem and also investigates the influence of changes in
saturation and frequency on intrinsic attenuation and velocity of
propagated waves in sand. The formulation presented in this study
is developed for the case of air and water fluid mixtures but it is
valid for all other nonwetting–wetting systems as well.

2. Governing equations

Following Fredlund and Morgenstern [22] and Fredlund and
Rahardjo [23], stress–strain relations in unsaturated soils are
obtained by Conte et al. [24] under the assumptions of isotropic
linear elastic soil skeleton, infinitesimal strains, isothermal condi-
tions and incompressible individual solid grains. These relations
are written in terms of total stress tensor r, pore-water pressure
pw and air-pressure pa as follows

r¼ Gð∇us þ ∇TusÞ þ H I ∇⋅us þ ϕw½χ Lþ ð1−χ ÞC�I ∇⋅uw

þϕa½χ C þ ð1−χ ÞN�I ∇⋅ua ð1Þ

pw ¼W ∇⋅us−ϕwL∇⋅uw−ϕaC ∇⋅ua ð2Þ

pa ¼M ∇⋅us−ϕwC ∇⋅uw−ϕaN ∇⋅ua ð3Þ
where T is transpose, I denotes identity tensor, G is shear modulus,
χ is effective stress parameter and ϕ is the soil porosity. Displace-
ment fields of the solid phase, water phase and air phase are
denoted by us, uw and ua, respectively. Water volume fraction ϕw

is related to the degree of water saturation Sw by the relation
ϕw ¼ ϕSw and air volume fraction ϕa is derived by ϕa ¼ ϕ ð1−SwÞ.
Other parameters appearing in Eqs. (1)–(3) are given by
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where as is related to Poisson's ratio of soil skeleton by
as ¼ υ=1−2υ, Kw is water bulk modulus, Ka is air bulk modulus,ms

1
is coefficient of volume change with respect to net normal stress,
ms

2 is coefficient of volume change with respect to matric suction,
mw

1 is coefficient of water volume change with respect to net
normal stress, mw

2 is coefficient of water volume change with
respect to matric suction. Coefficients of air volume changes ma
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χ can be derived by the relation χ ¼ms
2=m

s
1. It is useful to note that

Cosentini [25] showed mw
1 ¼ms

2.
To derive wave equations of motion, the momentum conserva-

tion equations should be introduced. Momentum equation expres-
sing the equilibrium of all forces acting on an elementary volume

of medium is expressed by [24]

∇⋅r−ρsð1−ϕÞ∂2t us−ρwϕw∂2t uw−ρaϕa∂2t ua ¼ 0 ð13Þ
Since the primary objective is to consider the inertial coupling

effects caused by the tortuosity of fluid phases, unsteady
terms should be added into Darcy's law. Therefore, we use fluid
momentum equations in the form presented by Smeulders [26]
to describe the pore-water and pore-air movement through the
soil

ϕwρw∂
2
t uw ¼−ϕw∇pw þ ðτw−1Þϕwρw∂

2
t ðus−uwÞ þ bw∂tðus−uwÞ ð14Þ

ϕaρa∂
2
t ua ¼ −ϕa∇pa þ ðτa−1Þϕaρa∂

2
t ðus−uaÞ þ ba∂tðus−uaÞ ð15Þ

where τw and τa are effective tortuosity of water and air phases.
Parameters bw and baare derived by

bw ¼ ϕw
2ηw
kw

ð16Þ

ba ¼
ϕa

2ηa
ka

ð17Þ

where ηw is the water viscosity, ηa is the air viscosity and kw and ka
are the effective permeability of water and air phases, respectively.
Effective permeability is defined as the permeability of a porous
medium to a particular fluid phase when more than one fluid
phase is present in the pore spaces.

Finally, partial differential equations of wave motion in unsa-
turated soils are derived from constitutive Eqs. (1)–(3) and
momentum Eqs. (13)–(15) after performing some algebraic manip-
ulations

ζ ∇∇⋅us−Gð∇∇⋅us−∇2usÞ þ ς ∇∇⋅uw þ ξ ∇∇⋅ua

−ðτf1−1Þϕwρw∂
2
t ðus−uwÞ−ðτf2−1Þϕaρa∂

2
t ðus−uaÞ

−bw∂tðus−uwÞ−ba∂tðus−uf2Þ−ρsð1−ϕÞ∂2t us ¼ 0 ð18Þ

−ϕw W ∇∇⋅us þ ðϕwÞ2L ∇∇⋅uw þ ϕwϕa C ∇∇⋅ua

þ ðτw−1Þϕwρw∂
2
t ðus−uwÞ þ bw∂tðus−uwÞ−ϕwρw∂

2
t us ¼ 0 ð19Þ

−ϕa M ∇∇⋅us þ ðϕaÞ2N ∇∇⋅ua þ ϕwϕa C ∇∇⋅uw

þ ðτa−1Þϕaρa∂
2
t ðus−uaÞ þ ba∂tðus−uaÞ−ϕaρa∂

2
t us ¼ 0 ð20Þ

where

ζ¼H þ 2GþWϕw þMϕa ð21Þ

ς¼ ϕw½χLþ ð1−χÞC�−ðϕwÞ2L−ϕwϕaC ð22Þ

ξ¼ ϕa½χC þ ð1−χÞN�−ðϕaÞ2N−ϕwϕaC ð23Þ
Note that by putting τw ¼ τa ¼ 1, the above equations coincide

with the wave equations of motion presented in Conte et al. [24].

3. Dispersion relations

3.1. Decomposition

The solid phase displacement vector usðx; tÞ, the pore-water
phase displacement vector uwðx; tÞ and the pore-air phase dis-
placement vector uaðx; tÞ can be decomposed in terms of the
compressional (longitudinal) wave potentials Φα (α¼ s; w; a) and
shear (transverse) wave potentials Ψα (α¼ s; w; a) by using
Helmholtz decomposition as given below [27]:

us ¼∇Φs þ ∇� Ψ s ð24Þ

uw ¼∇Φw þ∇� Ψw ð25Þ
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