Soil Dynamics and Earthquake Engineering 51 (2013) 9-13

journal homepage: www.elsevier.com/locate/soildyn

Contents lists available at SciVerse ScienceDirect

Soil Dynamics and Earthquake Engineering

EARTHQUAKE
ENGINEERING

A note on plane-wave approximation

Hasan Faik Kara?, Mihailo D. Trifunac ”*

2 Department of Civil Engineering, Istanbul Technical University, Istanbul, Turkey

b Department of Civil Engineering, University of Southern California, Los Angeles CA, USA

—

\!} CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 13 November 2012
Received in revised form

3 March 2013

Accepted 6 April 2013
Available online 4 May 2013

Keywords:

Plane SH waves

Cylindrical SH waves
Plane-wave approximation.

It is shown that the plane-wave assumption for incident SH waves is a good approximation for cylindrical
waves radiated from a finite source even when it is as close as twice the size of inhomogeneity. It is
concluded that for out-of-plane SH waves the plane-wave approximation should be adequate for many
earthquake engineering studies.
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1. Introduction

Many earthquake engineering studies of amplification of incident
seismic waves by internal inhomogeneities and by surface topography
assume excitation by plane harmonic waves [1-18]. It is assumed in
these studies that when the spherical and cylindrical wave fronts are
sufficiently far from the earthquake source the plane-wave approx-
imation may represent an adequate approximation. Most studies
assume periodic excitation and present the results in terms of
transfer-function amplitudes, usually along the ground surface and
in the vicinity of inhomogeneity. The significance of these studies has
been (1) in showing how the two- and three-dimensional inter-
ference, focusing, scattering, and diffraction of linear plane waves by
inhomogeneities lead to changes in the amplitudes, frequencies, and
locations of the observed peaks of transfer functions; and (2) in
comparing the relative significance of surface topography and interior
material inhomogeneities (sedimentary valleys) [18]. A review of
these studies is presented in [11].

The purpose of this brief note is to show, by using elementary
examples of SH waves, that the plane-wave approximation does
indeed provide reasonable and useful approximation. We will
show this by comparing the transfer functions for incident plane
waves with the transfer functions for excitation by cylindrical
waves emanating from a periodic finite source of SH waves.

2. Model

The model we consider consists of a semi-circular sedimentary
valley, with radius a, surrounded by the elastic homogeneous and
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isotropic half-space (Fig. 1). The half-space is characterized by
densityp, and shear-wave velocity c;, while the semi-cylindrical
valley is described by p, and c,. The fault, which radiates periodic
SH waves, is located at r = a5, between the angles  + ay—as;/2 and
7+ a5 + a5/2. The fault width is aray;.

3. Solution

To describe radiation from the fault, two displacement fields
are defined inside the half space: us = us; for a <r < ar and us = uy;
for a; <1 < . U contains two displacement fields, ug; represents
cylindrical waves propagating toward r=0, and us;, represents
reflected waves from the valley so that in that region us; = s+
Usic. Usp Tepresents the waves propagating away from the origin
r=0, and the waves inside the valley are u,.

The governing equation for out-of-plane SH waves that are

valid in both regions is
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The time dependence of the solution will be taken as harmonic
so that

u(r, 6,t) = u(r, 0)e 't )

where o is the angular frequency. When Eq. (2) is substituted into
Eq. (1), there follows
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Next, we introduce the wave number, k = w/c, which gives
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Fig. 1. Geometry of the problem.

When we assume that separation of the variables solves the
problem u(r, ) = R(r)©(9), there follows
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This equation holds if both sides are equal to a constant. If this
constant is chosen to be n?, then
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and after variable transformation, &=rk,
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This is a Bessel differential equation, and its solution is

R(&/k) = Ca(9). (7)

Changing the variables again, R(r) = C,(kr), the solution func-
tion will be C,(kr)e™. Since the solution has to be periodic in 6, n
has to be an integer. The solution is valid for all integer values of n,
from minus infinity to plus infinity. Therefore, the general solution
is a linear combination, as follows:

fj AnCr(krye™. (8
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u(r,0)=

here, A, are complex constants to be determined by boundary
conditions. C, is a Bessel function with order n, which can be
either J,,Yn, H."), or H,'®) depending on the physical conditions of
the problem. H," describes the outgoing waves, while H,?
describes the incoming waves. Because the series above is con-
vergent, it is possible to truncate it into a finite sum with N terms,

as follows:
N .
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The solutions for each sub-space in Fig. 1 are written below in

such a way that the solutions that do not satisfy the Sommerfeld
radiation condition are omitted. The displacement fields are
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where kg and kg,are wave numbers in the half-space and in the
valley, respectively. In terms of 5, these wave numbers will be
kss =nm/a, and kg, = (kgscs)/cy. 1 is the ratio of valley width over
wavelength in the half-space (7=2a/4s). Lamé's second para-
meters (shear moduli) for half-space and valley are u, = c;2p, and
uy, = ¢%p,, respectively. The angular frequency is o = kgsCs = kpyCy.

For convenience, we introduce ay=7z+a~as/2, ay=r+
a5 + ap/2 as new variables.

The boundary conditions are as follows:

Zero stress on a flat surface is

~—u,
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The continuity of stress and displacement on the interface
between the valley and the half-space is
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The continuity of stress in divided regions of half-space is

a
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The displacement difference in divided regions of half-space is

usl‘r:af_usﬂr:af :f(a)- (116)
Where f(0) is a function that satisfies the relative displacement
difference (on the fault surface) between angles «; and a;, (here
assumed to be a constant), and the continuity of displacement
elsewhere.

To satisfy the zero-stress condition on a flat surface, we
introduce another fault, symmetric with regard to the x axis—that
is, we employ the imaging method. With this imaginary fault, the
f(o) function will take the following form:

f(6) = {H[6—a1]-HI[6—a>]} + {H[0—(27—az)]-H[6—(27—a1)]} (12)

and its finite Fourier transform becomes
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