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a b s t r a c t

It is shown that the plane-wave assumption for incident SH waves is a good approximation for cylindrical
waves radiated from a finite source even when it is as close as twice the size of inhomogeneity. It is
concluded that for out-of-plane SH waves the plane-wave approximation should be adequate for many
earthquake engineering studies.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many earthquake engineering studies of amplification of incident
seismic waves by internal inhomogeneities and by surface topography
assume excitation by plane harmonic waves [1–18]. It is assumed in
these studies that when the spherical and cylindrical wave fronts are
sufficiently far from the earthquake source the plane-wave approx-
imation may represent an adequate approximation. Most studies
assume periodic excitation and present the results in terms of
transfer-function amplitudes, usually along the ground surface and
in the vicinity of inhomogeneity. The significance of these studies has
been (1) in showing how the two- and three-dimensional inter-
ference, focusing, scattering, and diffraction of linear plane waves by
inhomogeneities lead to changes in the amplitudes, frequencies, and
locations of the observed peaks of transfer functions; and (2) in
comparing the relative significance of surface topography and interior
material inhomogeneities (sedimentary valleys) [18]. A review of
these studies is presented in [11].

The purpose of this brief note is to show, by using elementary
examples of SH waves, that the plane-wave approximation does
indeed provide reasonable and useful approximation. We will
show this by comparing the transfer functions for incident plane
waves with the transfer functions for excitation by cylindrical
waves emanating from a periodic finite source of SH waves.

2. Model

The model we consider consists of a semi-circular sedimentary
valley, with radius a, surrounded by the elastic homogeneous and

isotropic half-space (Fig. 1). The half-space is characterized by
densityρs and shear-wave velocity cs, while the semi-cylindrical
valley is described by ρv and cv. The fault, which radiates periodic
SH waves, is located at r¼ af , between the angles π þ αf−αf l=2 and
π þ αf þ αf l=2. The fault width is af αf l.

3. Solution

To describe radiation from the fault, two displacement fields
are defined inside the half space: us ¼ us1 for aoroaf and us ¼ us2

for af oro∞. us1 contains two displacement fields, us1c represents
cylindrical waves propagating toward r¼ 0, and us1g represents
reflected waves from the valley so that in that region us1 ¼ us1gþ
us1c. us2 represents the waves propagating away from the origin
r¼ 0, and the waves inside the valley are uv.

The governing equation for out-of-plane SH waves that are
valid in both regions is
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The time dependence of the solution will be taken as harmonic
so that

Uðr; θ; tÞ ¼ uðr; θÞe−iωt ; ð2Þ
where ω is the angular frequency. When Eq. (2) is substituted into
Eq. (1), there follows
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Next, we introduce the wave number, k¼ ω=c, which gives
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When we assume that separation of the variables solves the
problem uðr; θÞ ¼ RðrÞΘðθÞ, there follows
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This equation holds if both sides are equal to a constant. If this
constant is chosen to be n2, then
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and after variable transformation, ξ¼ rk,
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This is a Bessel differential equation, and its solution is

Rðξ=kÞ ¼ CnðξÞ: ð7Þ
Changing the variables again, RðrÞ ¼ CnðkrÞ, the solution func-

tion will be CnðkrÞeinθ . Since the solution has to be periodic in θ, n
has to be an integer. The solution is valid for all integer values of n,
from minus infinity to plus infinity. Therefore, the general solution
is a linear combination, as follows:

uðr; θÞ ¼ ∑
∞

n ¼ −∞
AnCnðkrÞeinθ : ð8Þ

here, An are complex constants to be determined by boundary
conditions. Cn is a Bessel function with order n, which can be
either Jn,Yn, Hn

(1), or Hn
(2) depending on the physical conditions of

the problem. Hn
(1) describes the outgoing waves, while Hn

(2)

describes the incoming waves. Because the series above is con-
vergent, it is possible to truncate it into a finite sum with N terms,

as follows:

uðr; θÞ ¼ ∑
N
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AnCnðkrÞeinθ : ð9Þ

The solutions for each sub-space in Fig. 1 are written below in
such a way that the solutions that do not satisfy the Sommerfeld
radiation condition are omitted. The displacement fields are
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where kβs and kβvare wave numbers in the half-space and in the
valley, respectively. In terms of η, these wave numbers will be
kβs ¼ ηπ=a, and kβv ¼ ðkβscsÞ=cv. η is the ratio of valley width over
wavelength in the half-space ðη¼ 2a=λsÞ. Lamé's second para-
meters (shear moduli) for half-space and valley are μs ¼ cs2ρs and
μv ¼ cv2ρv, respectively. The angular frequency is ω¼ kβscs ¼ kβvcv.

For convenience, we introduce α1 ¼ π þ αf−αf l=2; α2 ¼ π þ
αf þ αf l=2 as new variables.

The boundary conditions are as follows:
Zero stress on a flat surface is
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The continuity of stress and displacement on the interface
between the valley and the half-space is
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uvjr ¼ a ¼ us1jr ¼ a: ð11cÞ

The continuity of stress in divided regions of half-space is
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The displacement difference in divided regions of half-space is

us1jr ¼ af −us2jr ¼ af ¼ f ðθÞ: ð11eÞ

Where f ðθÞ is a function that satisfies the relative displacement
difference (on the fault surface) between angles α1 and α2 (here
assumed to be a constant), and the continuity of displacement
elsewhere.

To satisfy the zero-stress condition on a flat surface, we
introduce another fault, symmetric with regard to the x axis—that
is, we employ the imaging method. With this imaginary fault, the
f ðθÞ function will take the following form:

f ðθÞ ¼ fH½θ−α1�−H½θ−α2�g þ fH½θ−ð2π−α2Þ�−H½θ−ð2π−α1Þ�g ð12Þ

and its finite Fourier transform becomes
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0
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Fig. 1. Geometry of the problem.

H.F. Kara, M.D. Trifunac / Soil Dynamics and Earthquake Engineering 51 (2013) 9–1310



Download English Version:

https://daneshyari.com/en/article/304225

Download Persian Version:

https://daneshyari.com/article/304225

Daneshyari.com

https://daneshyari.com/en/article/304225
https://daneshyari.com/article/304225
https://daneshyari.com

