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h i g h l i g h t s

� A new technique for automated seizure detection is described whereby statistical frequency–moment
signatures are compared with a control group.

� Following patient-specific training, seizure detection rates are comparable to visual inspection (cur-
rently the benchmark) and false detection rates are as low as 0.020 false positives per hour.

� The technique described has the potential to be used more widely in the field of EEG interpretation
and analysis, either related to epilepsy or in other situations.

a b s t r a c t

Objectives: To investigate patient-specific automated epileptic seizure detection from scalp EEG using a
new technique: frequency–moment signatures.
Methods: Signatures were calculated from 32 s blocks of data of electrode differences from the right (RH)
and left hemisphere (LH). Discrete Fourier transforms of 15 data subsets were calculated per block per
hemisphere. The spectral powers at a given frequency from the RH and LH were combined into a single
quantity. The signature elements were found by subtracting normalised central moments of the subset
distribution from the mean, to measure the consistency of the spectral power at a given frequency over
all subsets. The seizure measure was the logarithm of the probability that a signature belonged to a con-
trol set of non-seizure signatures.
Results: Following the optimisation of signature parameters using three one-day recordings from each of
12 patients, performance was tested on a separate set of data from the same patients. The method had a
sensitivity of 91.0% (total 34 seizures) with 0.020 false positives per hour (total 618 h).
Conclusions: Frequency–moment signatures promise automated seizure detection sensitivities compara-
ble to visual identification and other published methods, with improved false detection rates.
Significance: This technique has the potential to be used more widely in EEG analysis.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Epilepsy is a chronic neurological disorder characterised by the
occurrence of seizures. It affects 50 million people worldwide at
any one time (WHO, 2009), of which a large proportion of sufferers
do not respond to available seizure control therapies. These epi-
lepsy sufferers have to live with seizures occurring abruptly and
seemingly without warning.

Non-invasive scalp EEG is recorded in long-term monitoring of
epilepsy patients. Seizures and abnormal events are then identified
visually from the recordings, however this is a time consuming

process that can only be performed by experts. This process is crit-
ical for accurate diagnosis and choice of treatment. It has been
shown that seizure detection by visual inspection has a sensitivity
of 92% while detecting only 0.1 false seizures per hour (Wilson
et al., 2003).

Automated seizure detection can be a valuable aid to clinicians,
particularly for epileptic patients undergoing long-term monitoring
(Gotman, 1990, 1997; Gotman, 1999). Many methods have been
developed over the years with various approaches to the seizure
detection problem. Nonlinear techniques (Schad et al., 2008; Schin-
dler et al., 2001; Stam, 2005) as well as time–frequency analysis
methods (Gotman, 1982; Gotman, 1999; Osorio et al., 1998;
Sartoretto and Ermani, 1999) have been investigated. A number of
methodologies have also attempted in various ways to mimic the
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human observer that reads the EEG (Deburchgraeve et al., 2008;
Khamis et al., 2009). Despite a considerable research effort, current
seizure detection methodologies are far from perfect with many
being considered impractical due to high false detection rates (Hop-
fengärtner et al., 2007; Varsavsky and Mareels, 2006), however pa-
tient-specific approaches have been demonstrated to perform
better than generalised methods (Chua et al., 2011).

In this work, an approach to patient-specific seizure detection is
described whereby blocks of sampled electrode data are used to
calculate data objects termed frequency–moment signatures. Test
signatures are then compared statistically to a set of signatures
from non-seizure data, and if an estimate of the probability that
the test signature belongs to the control set is sufficiently low, a
seizure is signalled.

Data objects known as signature images have also been used for
welding fault detection (Simpson, 2007b). In that application, two-
dimensional histograms of sampled welding voltage and current
data formed the signatures, and whether a fault had occurred was
determined by comparison with control data. Although the calcula-
tion of the signatures from the scalp EEG is very different, the sta-
tistical analysis for automated seizure detection here is based on
the welding analysis with a couple of minor modifications.

The statistical analysis applies to any data object described as a
vector. However there are a number of advantages to processing
the data into the signature image format (if two useful axes for
the signatures can be chosen), as will be shown to be the case here.
Firstly, assigning the data to bins in two dimensions is useful for
noise reduction and usually provides a more compact description
than the original data. Secondly, simple image-processing opera-
tions, such as smoothing, can improve performance. Finally, visual-
isation of the signature images themselves is a valuable tool in
understanding the phenomena being studied.

The following sections describe the frequency–moment signa-
ture calculations, seizure measure calculation, signature parameter
optimisation, and finally testing and measuring performance.

2. Methods

2.1. Overview

Scalp EEG data was collected from epileptic patients and seizure
events were marked by experienced electroencephalographers. For
each patient, EEG data from electrode differences T6–P4 (right
hemisphere) and T5–P3 (left hemisphere) were windowed into
data blocks and filtered. The discrete Fourier transform was com-
puted for subsets of each data block. The square root of the spectral
power was smoothed and the results from each hemisphere were
combined. The background spectrum was then removed and the
spectrum limited to a frequency range where peaks are likely to
appear during seizures. The moments of the subset distribution
at each frequency were calculated and compared mathematically
to a one-sided exponential distribution to yield estimates of con-
sistency (or uniformity) within a data block for the kth moment.
The signature images were then composed with the axes frequency
and moment number, k. An estimate of the probability that a given
signature belongs to non-seizure control data was made using
Principal Component Analysis with asymmetric shifted Normal
distributions fitted to each axis. Finally a seizure measure was cal-
culated from the logarithm of the probability with modifications to
reduce sensitivity.

2.2. Data collection

Continuous 24-h EEG recordings were collected from epileptic
patients (8 male, 4 female, aged 19–49) with left temporal lobe

epilepsy (TLE). All patients were monitored for a number of days
by a nurse technician during the EEG recording and were tested
clinically during a seizure. Patients were taking different antiepi-
leptic medications, and during their inpatient EEG monitoring the
doses did not remain constant but were reduced to investigate sei-
zures for clinical purposes. Ethics approval was granted by the Uni-
versity of Sydney Human Research Ethics Committee and prior to
enrolment in the study, patient written consent was sought.

EEG data from 21 electrodes, sampled at 256 Hz, were recorded
from left temporal lobe epilepsy (TLE) patients using the Compu-
medics EEG system (Abbotsford, Victoria). The following electrodes
were recorded: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, T6, A1, A2, Fz, Cz, and Pz (according to the international 10–20
system of electrode placement (Malmivuo and Plonsey, 1995)). The
reference electrode was on the neck or face and each electrode had
an impedance range of less than 5 kO.

Experienced electroencephalographers inspected the 21 elec-
trode EEG and video data visually and marked clinical and electro-
encephalographic events. In addition, seizure and non-seizure
events were confirmed by experienced staff listening to the audi-
fied EEG (Khamis et al., 2012).

Here, an identical channel setup to Khamis et al. (2012), with
four fixed channels recorded and reduced to two differences was
used, as described in the following section.

2.3. Frequency–moment signatures

At the sampling rate of 256 Hz, signatures were calculated over
32 s from 8192 pairs of data points consisting of the difference be-
tween electrodes T6 and P4 (right hemisphere, RH) and the differ-
ence between the electrodes T5 and P3 (left hemisphere, LH). The
blocks of 8192 pairs of data points were overlapped by 50%, result-
ing in a signature every 16 s. These are referred to as RH blocks and
LH blocks. The standard 50% overlap results in all points having
equal weighting.

The seizure events that were determined from visual and audio
inspection, were used to mark each 32 s block as either seizure or
non-seizure. A 32 s block was marked as a seizure if the entirety of
the block was within a seizure, and marked as a non-seizure
otherwise.

A 32 s block size was chosen with regard to the shortest seizure
likely to be encountered. Optimising the block size could improve
the performance of this method. With non-overlapped blocks, a
seizure around 32 s in length would usually span two blocks and,
since, as described below, the method measures consistency with-
in each block, it would not be detected. Overlapping by 50% helps
to overcome this and provides more frequent seizure measures.

EEG recordings from electrodes at the front of the head com-
monly contain artefacts from eye blinks and eyeball movement
that are usually quite large compared to cerebral potentials. (Fisch,
1991; Reilly, 2005). This occurs far less in electrodes at the rear of
the head. All data were collected from patients suffering from left
temporal lobe epilepsy. For these reasons, here, fixed electrodes in
the rear temporal region of the head (T6–P4 and T5–P3) were cho-
sen for analysis. Research on audified EEG for seizure detection has
demonstrated that these electrodes are a good choice (Khamis
et al., 2012).

Digital pre-filtering of data is a common step in automated EEG
analysis (Greene et al., 2007, 2008; Schindler et al., 2001, 2002).
Here, the RH and LH blocks were filtered with a pass band between
0.5 Hz and 50 Hz and a notch filter at 50 Hz to remove baseline
drift, unwanted muscle twitch and mains power interference
respectively, the effects of which can mask important features of
the underlying EEG signal. For the purpose of temporal lobe seizure
detection, it was not necessary to preserve the entire original EEG
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