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a b s t r a c t

Objective: Ordinal patterns analysis such as permutation entropy of the EEG series has been found to use-
fully track brain dynamics and has been applied to detect changes in the dynamics of EEG data. In order to
further investigate hidden nonlinear dynamical characteristics in EEG data for differentiating brain states,
this paper proposes a novel dissimilarity measure based on the ordinal pattern distributions of EEG series.
Methods: Given a segment of EEG series, we first map this series into a phase space, then calculate the
ordinal sequences and the distribution of these ordinal patterns. Finally, the dissimilarity between two
EEG series can be qualified via a simple distance measure. A neural mass model was proposed to simulate
EEG data and test the performance of the dissimilarity measure based on the ordinal patterns distribu-
tion. Furthermore, this measure was then applied to analyze EEG data from 24 Genetic Absence Epilepsy
Rats from Strasbourg (GAERS), with the aim of distinguishing between interictal, preictal and ictal states.
Results: The dissimilarity measure of a pair of EEG signals within the same group and across different
groups was calculated, respectively. As expected, the dissimilarity measures during different brain states
were higher than internal dissimilarity measures. When applied to the preictal detection of absence sei-
zures, the proposed dissimilarity measure successfully detected the preictal state prior to their onset in
109 out of 168 seizures (64.9%).
Conclusions: Our results showed that dissimilarity measures between EEG segments during the same
brain state were significant smaller that those during different states. This suggested that the dissimilar-
ity measure, based on the ordinal patterns in the time series, could be used to detect changes in the
dynamics of EEG data. Moreover, our results suggested that ordinal patterns in the EEG might be a poten-
tial characteristic of brain dynamics.
Significance: This dissimilarity measure is a promising method to reveal dynamic changes in EEG, for
example as occur in the transition of epileptic seizures. This method is simple and fast, so might be
applied in designing an automated closed-loop seizure prevention system for absence epilepsy.
� 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

The electroencephalogram (EEG) signal is a measure of the
summed activity of approximately 1–100 million neurons lying
in the vicinity of the recording electrode (Sleigh et al., 2004), and
may provide insight into the functional structure and dynamics
of the brain (Stam et al., 1999; Buzsaki, 2006). Therefore, the explo-
ration of hidden dynamical structures within EEG signals is of both
basic and clinical interests (Ouyang et al., 2008; Schad et al., 2008;
Stacey and Litt, 2008). Recently, various methods have been used
to analyze the temporal evolution of brain activity from EEG
recordings (Stam, 2005; Mormann et al., 2007). They range from
traditional linear methods, such as Fourier transforms and spectral

analysis (Rogowski et al., 1981), to nonlinear methods derived
from the theory of nonlinear dynamical systems (also called chaos
theory), such as Lyapunov exponents (Wolf et al., 1985) and corre-
lation dimension (Pritchard and Duke, 1995). To some extent, these
chaos-based approaches are capable of extracting informative fea-
tures from epilepsy EEG data (Iasemidis and Sackellares, 1996; El-
ger and Lehnertz, 1998; Lehnertz and Elger, 1998), sleep EEG data
(Fell et al., 1993; Ferri et al., 2003) and anaesthesia EEG data (Watt
and Hameroff, 1988; Widman et al., 2000), and moreover, these
chaos-based approaches are more superior to the traditional linear
methods (Rabinovich et al., 2006). However, chaos-based ap-
proaches assume that the signal is stationary and originates from
a low dimensional nonlinear system. In reality, a real EEG is a
non-stationary signal and stems from a highly nonlinear system
(Gribkov and Gribkova, 2000). Therefore, chaos-based approaches
must be used with care and caution in analyzing EEG data
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(Eckmann and Ruelle, 1992; Rapp, 1993). It is thus important to de-
velop new methods to characterise EEG changes in different phys-
iological and pathological states (Stam, 2005).

Recently, an ordinal time series analysis method was proposed
by Bandt and Pompe (2002). This method measures the irregularity
of non-stationary time series. The basic premise of this method is
consideration of the order relations between the values of a time
series and not the values themselves. The advantages of this meth-
od are its simplicity, robustness and low complexity in computa-
tion (Bandt and Pompe, 2002; Bandt et al., 2002) without further
model assumptions. Also, the Bandt-Pompe method is robust in
the presence of observational and dynamical noise (Bandt and
Pompe, 2002; Rosso et al., 2007a). This method does show a funda-
mental distinction between deterministic chaos and noisy systems
(Amigo and Kennel, 2007; Rosso et al., 2007b). These advantages
facilitate the use of methods based on the Bandt-Pompe algorithm
for investigating the intrinsic ordinal structures in complex time
series from physical systems (Amigo et al., 2005, 2007; Amigo
and Kennel, 2007, 2008; Bahraminasab et al., 2008; Bandt, 2005;
Bandt and Shiha, 2007; Keller and Wittfeld, 2004; Keller and Sinn,
2005; Keller et al., 2007a; Rosso et al., 2007a,b; Zunino et al., 2008)
and physiological systems (Bruzzo et al., 2008; Cao et al., 2004;
Frank et al., 2006; Groth, 2005; Jordan et al., 2008; Keller et al.,
2007b; Li et al., 2007a, 2008; Olofsen et al., 2008; Staniek and
Lehnertz, 2007). In this paper, we have considered ordinal pattern
distributions of EEG time series as a whole. We first counted the
occurrences of each ordinal pattern and obtained the ordered
rank–frequency distribution. Then, we quantified the ‘‘distance”
between the rank–frequency distributions, called a dissimilarity
measure. This dissimilarity measure was then used to investigate
the dynamical characteristics of epileptic EEG data.

2. Methods

Given a time series, x1; x2; . . . ; xN , an application of an embedding
procedure was used to generate Nðm1Þs vectors X1;X2; . . . ; XNðm1Þs

defined by: Xt ¼ ½xt ; xtþs; . . . ; xtþðm�1Þs� with the embedding dimen-
sion, m, and the lag, s. This vector Xt can be rearranged in an increas-
ing order as follows: ½xtþðj1�1Þs 6 xtþðj2�1Þs . . . 6 xtþðjm�1Þs�. To obtain
an unique result, we set jr�1 < jr in the case of xtþðjr�1�1Þs ¼ xtþðjr�1Þs.
For m different numbers, there will be m! ¼ 1� 2� � � � �m possible
ordinal patterns p; which are also called permutations. As shown in
Fig. 1(A), for m ¼ 3, there are six possible ordinal patterns between
xt; xtþs and xtþ2s. Fig. 1(B) illustrates the definition of ordinal pat-
terns for the sine function (left) and white noise time series (right),
with m ¼ 3 and s ¼ 1. Based on these ordinal patterns, a new ordinal
sequence pi can be obtained. To further develop the statistical anal-
ysis of ordinal pattern distributions, we counted the occurrences of
the ordinal patterns p, which was denoted as CðpÞ, then the relative
frequency was calculated by pðpÞ ¼ CðpÞ=ðN � ðm� 1ÞsÞ, as is
shown in Fig. 1(C). These were then re-sorted in order of descending
frequency, to obtain a rank–frequency distribution pðpRÞ, plotted in
Fig. 1(D)), which represents the statistical hierarchy of ordinal se-
quences in the original time series. For example, the first rank pat-
tern p corresponds to one type of ordinal pattern, which is the
most frequent pattern in the time series. In contrast, the last rank
pattern p indicates that this pattern is the weakest in the time series.

As shown in Fig. 1(D), the distributions of ordinal patterns of the
sine function and white noise time series were quite different.
With the white noise time series, with the characteristics of ran-
dom processes, the probability distribution should be even since
any ordinal pattern has the same probability of occurrence when
the time series is long enough to exclude statistical fluctuations.
However, when the series corresponds to a deterministic process,
as in the example of the sine function, there are some patterns that

will be encountered frequently in the time series due to the under-
lying deterministic structure. Therefore, we can quantify the ‘‘dis-
tance” between the rank–frequency distributions to measure
dissimilarity between two time series, and this is given by

DmðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!=m!� 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm!

i¼1

ðpXðpRiÞ � pYðpRiÞÞ2
vuut ð1Þ

where pXðpRiÞ and pY ðpRiÞ represent the rank frequencies of the time
series X and Y, respectively. This measure ranges from 0 to 1
(0 6 Dm 6 1). When Dm ¼ 0, it indicates that the rank–frequency
ordinal patterns distribution in the two series is identical. In con-
trast, Dm ¼ 1 indicates that one of the two series is totally different.

Therefore, a crucial parameter in this dissimilarity measure
method is the choice of embedding dimension, m. When m is too
small (less than 3) the scheme will not work well, since there are
only very few distinct states for the time series. On the other hand,
the length of the time series should be larger than m! in order to
achieve a proper differentiation between stochastic and determin-
istic dynamics (Staniek and Lehnertz, 2007). In order to allow every
possible ordinal pattern of dimension m to occur in a time series of
length N, the condition m! 6 N � ðm� 1Þs must hold and, more-
over, N >> m!þ ðm� 1Þs, to avoid undersampling (Amigo et al.,
2007). For this reason, given a dimension of length m, we need to
choose N P ðmþ 1Þ!. To satisfy this condition, we therefore chose
only a low dimension m = 4 or m = 5 for the dissimilarity measure
for this study.

3. Simulations

3.1. Neural mass model

A neural mass model, known as the nonlinear lumped-parame-
ter cerebral cortex (LPCC) model (Lopes da Silva et al., 1974; Jansen
and Rit, 1995; Wendling et al., 2000), was used to test the perfor-
mance of this new method in this study. The following set of six
differential equations governed the model:

_y0ðtÞ ¼ _y3ðtÞ;
_y3ðtÞ ¼ AaSðy1 � y2Þ � 2ay3ðtÞ � a2y0ðtÞ;
_y1ðtÞ ¼ _y4ðtÞ;
_y4ðtÞ ¼ AafpðtÞ þ C2S½C1y0ðtÞ�g � 2ay4ðtÞ � a2y1ðtÞ;
_y2ðtÞ ¼ _y5ðtÞ;
_y5ðtÞ ¼ BbfC4S½C3y0ðtÞ�g � 2by5ðtÞ � b2y2ðtÞ:

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

All the values of parameters in the model were set based on a
physiological basis, the details of which can be found in Jansen
and Rit (1995), Wendling et al. (2000)). In the model, the intra-
population behavior is primarily influenced by the excitatory neu-
ron parameter, A, and the inhibitory neuron parameter, B. The
parameters A and B modulate the balance of excitation and inhibi-
tion (heðtÞ ¼ uðtÞAate�at and hiðtÞ ¼ uðtÞBbte�bt). By altering the
excitatory and inhibitory parameters, the model can produce sig-
nals that strongly resemble intracranial EEG recordings (Wendling
et al., 2000).

In this study, the extrinsic input pðtÞ represents a Gaussian
white noise with assigned mean value and variance (mean(p) = 75,
std(p) = 25), which describes the overall density of action poten-
tials coming from other regions. For each simulation described
below, the differential equations were solved numerically using a
fourth–fifth order Runge–Kutta algorithm. Initial conditions were
set to zero in all simulations, and an integration step size of 5 ms
was used. The first 1000 points of the simulated signals were
discarded in order to avoid transient behavior.
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