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a b s t r a c t

Objective: To examine the process of the sleep onset quantitatively and explore differences between nar-
coleptics and controls during the sleep onset period (SOP).
Method: Dynamic detrended fluctuation analysis (DFA) was applied to electroencephalograms recorded
during multiple sleep latency tests of 11 drug-free narcoleptic patients (19:3� 4:4 yrs; 8 males) and 9
healthy controls (23:8� 6:3 yrs; 6 males). The SOP of each group was estimated by fitting the time
courses of the DFA scaling exponents to a parametric curve.
Results: The sequence of DFA exponents showed that electrophysiological brain activity was changing
rapidly across the SOP. This transition was also verified by a conventional method (i.e., dynamic spectral
analysis). The SOP durations of narcoleptics and controls were estimated as 239� 25 s and 145� 20 s,
respectively.
Conclusions: The significantly larger SOP of narcoleptics, compared to controls, is consistent with the
wake state of narcolepsy being more susceptible to sleep due to a lower barrier to transitioning to sleep.
Significance: Our results suggest that electrophysiological signatures of narcolepsy could be quantified by
dynamic DFA, so the method may have promise as a potential tool to help the diagnosis of narcolepsy
despite the present study’s limited sample size.
� 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Sleep onset consists of a flip-flop transition between the two
fundamentally different behavioral stages, wake and sleep, over
several minutes. This episode, often referred to as the sleep onset
period (SOP), marks a period of gradual change involving a pro-
gressive reduction in the arousal level until the achievement of
definite sleep. In parallel with physiological, cognitive, subjective,
and behavioral changes that take place during the SOP, there are
remarkable changes in the electroencephalogram (EEG), which
indicates that falling asleep is a continuous process over a time
interval of a few minutes.

At what point can a subject be said to be really asleep, or what is
the moment of sleep onset? There have been many studies on
these questions (for reviews, see Ogilvie (2001), and Merica and
Fortune (2004)). For example, using a 30 s resolution, Rechtschaf-

fen and Kales (1968) defined sleep onset based on criteria of reduc-
tion of alpha band density. However, the most frequently used
definition is the first appearance of sleep spindles or K-complexes
(stage 2), chiefly because this can be more precisely pinpointed
(Rechtschaffen and Kales, 1968). The first occurrence of one 30 s
epoch of unequivocal sleep (stage 2, 3, or rapid eye movement
sleep (REM)), or three consecutive stage 1 sleep epochs also indi-
cates the sleep onset (Mitler et al., 2005). Hori et al. (1994) traced
the sequence of changes in the EEG that leads from wake to the
sleep onset, by subdividing the standard stages (wake, stage 1,
and stage 2) into nine sub-stages (two from wake, six from stage
1, and one from stage 2 sleep) using a finer 5-s resolution. On
the other hand, dynamic spectral analysis (e.g., see Merica and
Gaillard (1992)) has been applied to examine quantitatively the
temporal interrelationship between the spectral constituents of
the EEG. It has been reported that the delta band (0.5–4 Hz) power
increases, while the beta band (15–30 Hz) power decreases during
the SOP (Freedman, 1986; Merica and Gaillard, 1992; Lamarche
and Ogilvie, 1997; Alloway et al., 1999).

Exploring the SOP is important, not only because it links the two
most fundamental states, wake and sleep, but also because many

1388-2457/$36.00 � 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.clinph.2009.04.018

* Corresponding author. Address: School of Physics, The University of Sydney,
Physics Rd., Sydney, NSW 2006, Australia. Tel.: +61 2 9351 5896; fax: +61 2 9351
7726.

E-mail address: jwkim@physics.usyd.edu.au (J.W. Kim).

Clinical Neurophysiology 120 (2009) 1245–1251

Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier .com/locate /c l inph

mailto:jwkim@physics.usyd.edu.au
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


sleep disorders are often linked to difficulties in either falling
asleep (insomnia) or remaining awake or asleep (narcolepsy). Nar-
colepsy, a chronic sleep disorder that affects about 0.05% of hu-
mans (Ohayon et al., 2002; Wing et al., 2002; Nishino and
Kanbayashi, 2005) and is characterized by excessive daytime
sleepiness, cataplexy, and other abnormal manifestations of REM
sleep (American Academy of Sleep Medicine, 2005), is of particular
interest in the current study. Nocturnal polysomnography and
multiple sleep latency tests (MSLT) are a set of laboratory tests
for diagnosis of narcolepsy (for details on diagnostic categories,
see the international classification of sleep disorder (ICSD-2)
(American Academy of Sleep Medicine, 2005)). However, underly-
ing physiology related to brain activity characterizing narcolepsy
still remains unclear. Some attempts to develop new measures
(Alloway et al., 1999; Ferri et al., 2005; Kim and Shin, 2008) to
associate the disorder with the quality of sleep, as well as mathe-
matical models (Phillips and Robinson, 2007) to explain aspects of
narcolepsy have been reported recently. Determining electrophys-
iological properties of narcolepsy directly from the EEG obtained
from the MSLT is one of the main aims of this paper.

Among various methods developed to analyze EEGs is detrend-
ed fluctuation analysis (DFA), which was originally developed to
characterize DNA sequences (Peng et al., 1993). DFA has been ap-
plied to various fields including physics, economics, and biology,
where the relation between the variance of some measure is dis-
covered as a function of time scale after local trends are removed.
When a signal exhibits a scaling behavior via conventional meth-
ods such as spectral analysis, the DFA shows similar scaling behav-
ior as well (Peng et al., 1993; Robinson, 2003). The DFA often yields
more robust results, in particular, under non-stationary conditions
(Kantz and Schreiber, 2004). It is thus a useful tool to analyze EEGs
that often show non-stationary behaviors (e.g., reference voltage
drifts). Examples of applying the DFA to EEGs can be found in pre-
vious literature (Linkenkaer-Hansen et al., 2001; Lee et al., 2002;
Kim and Shin, 2008).

In this paper, we investigate the electrophysiological character-
istics of the sleep onset process applying the DFA to EEG recorded
during the MSLT. Using a moving window technique, we obtain the
time courses of the DFA scaling exponents during the sleep onset of
9 healthy controls and 11 narcoleptic patients. The transitional
behavior between wake and sleep during the SOP is explored and
compared with results from the conventional method (i.e., dy-
namic spectral analysis). The SOP of narcoleptics and controls are
estimated by fitting the sequences to a parametric curve (sigmoi-
dal function). Finally, the clinical significance of the SOP of the
two groups is discussed.

2. Materials and method

2.1. EEG during the MSLT

We investigated EEG of 21 subjects: 9 healthy controls free of
any sleep disorder (6 males, 23:8� 6:3 yrs) and 11 drug-free narco-
lepsy patients (8 males, 19:3� 4:4 yrs), referred to the Eulji univer-
sity hospital, Seoul, Korea. All subjects were examined according to
protocols including clinical interviews, physical and neurological
examinations, nocturnal polysomnography and the MSLT. The final
diagnosis of narcolepsy was made following ICSD-2 (American
Academy of Sleep Medicine, 2005). As the standard procedure of
the MSLT (Littner et al., 2005), subjects tried to sleep five times
with 2-h-intervals during daytime. Subjects attempted to nap in
a sound-attenuated dark room for 20–35 min. After a trial, subjects
were kept to be completely awaken for about 1.5 h and then at-
tempted to nap again. EEG at C3/A2, F4/A1, O1/A2, and P4/A1 chan-
nels in the 10/20 system (Somnologica, Medcare Co., USA) were

recorded every 0.005 s. This 200 Hz sampling rate gives a Nyquist
frequency of 100 Hz for the dynamic spectral analysis, but dynamic
DFA examines much longer time scales and there is little EEG
power above 100 Hz, so this is not a significant limitation in the
present context. Two channels of electrooculogram, electrocardio-
gram, and submentalis electromyogram were also recorded, but
not analyzed in our study. The impedance of electrodes was set be-
low 5 kX. A low-pass filter with the cut-off frequency at 2 kHz and
a notch filter at 60 Hz (Embla, Flaga hf. Medical Devices, Iceland,
2000) were applied to remove interference by apparatus. Since
DFA analyzes signals in the time domain, no software bandpass fil-
ter (e.g., via the Fourier transformation) was applied prior to the
DFA procedure. For each nap trial, each 30 s epoch of EEG was
scored to find the sleep onset defined as either the first occurrence
of unequivocal sleep (stage 2, 3, or REM), or three consecutive stage
1 sleep epochs. After that, EEGs were trimmed as 10-min segments
across the sleep onset. Sometimes, healthy controls did not fall
asleep in 20 min and EEGs of such a case were excluded, but all
subjects fell asleep at least once. EEGs showing extraordinary fluc-
tuations were excluded as well. For example, one control subject
showed seizure-like behaviors (hypnic jerks (Mahowald and
Schenck, 1997)) and, accordingly, was omitted from all analyses
(i.e., there were 10 controls).

2.2. Detrended fluctuation analysis

The DFA method consisted of the following steps (Peng et al.,
1993; Kantz and Schreiber, 2004):

Step I. For a given sequence xðtÞ, computed an integrated se-
quence yðtÞ,

yðtÞ ¼
Z t

0
½xðt0Þ � xh i�dt0; ð1Þ

where hxi ¼ T�1 R T
0 xðtÞdt.

Step II. Fluctuations of yðtÞ, after detrending by fitting kth order
polynomials (see below), were computed as

vðkÞðs; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s0

Z tþs

t
½yðt0Þ � pðkÞðt0Þ�2

s
dt0; ð2Þ

where s0 was a normalization factor. s0 ¼ s� ðkþ 1Þdt � s (dt � 1,
the inverse of the sampling rate) was used to compensate a bias to-
ward too small value of vðkÞðs; tÞ for very small s (Kantz and Schre-
iber, 2004). Here, underlying trends of y were estimated as kth
order polynomials pðkÞ via least-squares fitting over a given time
interval t 6 t0 < t þ s, and then subtracted to calculated vðkÞðs; tÞ.
We set k ¼ 2 because linear detrending (k ¼ 1) was often insuffi-
cient to find a proper scaling when the baseline of EEG was drifting
(Kim and Shin, 2008).

Step III. The scaling exponent could be found by averaging
vðkÞðsÞ over all time intervals of length s, which was

vðkÞðsÞ
� �

� sj: ð3Þ

To demonstrate the usefulness of the DFA, we applied the meth-
od to various artificial signals: Brownian, 1=f , and random noise. In
the literature, noise is often named after its spectral density of the
form Pðf Þ � f�b, where f was frequency and 0 6 b 6 2. For exam-
ple, b ¼ 0 means that the signal has equal power in any band of
the spectrum, giving a random sequence in the time domain.
Brownian noise, with its spectral density is proportional to f�2

(b ¼ 2), can be produced by integrating this random noise. It im-
plies that Brownian noise has more energy at lower frequencies,
whereas 1=f noise has intermediate properties between random
noise and Brownian noise. As shown in Fig. 1, the estimated DFA
scaling exponents of these short intervals were approximately
1.5, 1.0, and 0.5 for Brownian, 1=f , and random noise, respectively,
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