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a b s t r a c t

Over the last ten years blind source separation (BSS) has become a prominent processing tool in the study
of human electroencephalography (EEG). Without relying on head modeling BSS aims at estimating both
the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed
EEG. In this review we begin by placing the BSS linear instantaneous model of EEG within the framework
of brain volume conduction theory. We then review the concept and current practice of BSS based on sec-
ond-order statistics (SOS) and on higher-order statistics (HOS), the latter better known as independent
component analysis (ICA). Using neurophysiological knowledge we consider the fitness of SOS-based
and HOS-based methods for the extraction of spontaneous and induced EEG and their separation from
extra-cranial artifacts. We then illustrate a general BSS scheme operating in the time-frequency domain
using SOS only. The scheme readily extends to further data expansions in order to capture experimental
source of variations as well. A simple and efficient implementation based on the approximate joint diag-
onalization of Fourier cospectral matrices is described (AJDC). We conclude discussing useful aspects of
BSS analysis of EEG, including its assumptions and limitations.
� 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Recent studies on human electroencephalogram (EEG) are
based on the theory of brain volume conduction. It is well estab-
lished that the generators of brain electric fields recordable from
the scalp are macroscopic post-synaptic potentials created by
assemblies of pyramidal cells of the neocortex (Speckmann and El-
ger, 2005). Pyramidal cells are aligned and oriented perpendicu-
larly to the cortical surface. Their synchrony is possible thanks to
a dense net of local horizontal connections (mostly <1 mm). At
recording distances larger than about three/four times the diame-
ter of the synchronized assemblies the resulting potential behaves
as if it were produced by electric dipoles; all higher terms of the
multipole expansion vanish and we obtain the often invoked di-
pole approximation (Lopes da Silva and Van Rotterdam, 2005; Nu-
nez and Srinivasan, 2006, Ch. 3). Three physical phenomena are
important for the arguments we advocate in this study. First, un-
less dipoles are moving there is no appreciable delay in the scalp
sensor measurement (Lopes da Silva and Van Rotterdam, 2005).
Second, in brain electric fields there is no appreciable electro-mag-
netic coupling (magnetic induction) in the frequencies up to about
1 MHz, thus the quasi-static approximation of Maxwell equations

holds throughout the spectrum of interest (Nunez and Srinivasan,
2006, p. 535-540). Finally, for source oscillations below 40 Hz it
has been verified experimentally that capacitive effects are also
negligible, implying that potential difference is in phase with the
corresponding generator (Nunez and Srinivasan, 2006, p. 61).
These phenomena strongly support the superposition principle,
according to which the relation between neocortical dipolar fields
and scalp potentials may be approximated by a system of linear
equations (Sarvas, 1987). Whether this is a great simplification,
we need to keep in mind that it does not hold true for all cerebral
phenomena. Rather, it does at the macroscopic spatial scale we are
interested in here.

A common approach to the study of human EEG is to describe
patterns in space and time and link empirical findings with ana-
tomical and physiological knowledge. The problem is characterized
by high temporal resolution (about 1 ms) and low spatial resolu-
tion (several cm3). For example, it has been estimated that without
time averaging about 60 million contiguous neurons must be syn-
chronously active as to produce observable scalp potentials (Nunez
and Srinivasan, 2006, p. 21). Such a cluster would realistically ex-
tend over several cm2 of cortical gyral surface, whereas disentan-
gling fields emitted by cortical functional units may require
much higher precision. Because of volume conduction, scalp EEG
potentials describe a mixture of the fields emitted by several di-
poles extending over large cortical areas. Practically, in order to

1388-2457/$34.00 � 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.clinph.2008.09.007

* Corresponding author. Tel.: +33 0 4 7657 4352; fax: +33 0 4 7657 4790.
E-mail address: Marco.Congedo@Gmail.com (M. Congedo).

Clinical Neurophysiology 119 (2008) 2677–2686

Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier .com/locate /c l inph

mailto:Marco.Congedo@Gmail.com
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


improve the spatial resolution it is often necessary to trade in the
temporal one operating some form of temporal averaging. In sum-
mary, the path followed by much of current EEG research is to ‘‘iso-
late” in space and time the generators of the observed EEG as much
as possible, counteracting the mixing caused by volume conduc-
tion and maximizing the signal-to-noise ratio (SNR).

Over the years we have assisted to the development of several
classes of methods to improve the spatial specificity. Those in-
clude, among others, surface and cortical Laplacian (Nunez and
Srinivasan, 2006), equivalent dipole fitting (Mosher et al., 1992)
and distributed minimum norm (model-driven) or minimum vari-
ance (data-driven) inverse solutions (Greenblatt et al., 2005; Lopes
da Silva, 2004). Targeted attempts include sparsification ap-
proaches (Gorodnitsky et al., 1995; Cotter et al., 2005) and spatial
filters known as beamformers (Rodrı́guez-Rivera et al., 2006; Cong-
edo, 2006). Surface Laplacian methods apply a spatial high-pass fil-
tering to the scalp potential by estimating their second spatial
derivative. They tend to overemphasize high spatial frequency
and radial (to the scalp surface) dipolar fields. Inverse solutions
seek source localization in a chosen solution space and rely on geo-
metrical models of the head tissue. Unfortunately, the accurate
description of EEG volume conduction is complicated by inhomo-
geneity (resistivity varies with type of tissue) and anisotropy
(resistivity varies in different directions); therefore source localiza-
tion methods are inevitably undermined by geometrical modeling
error.

Another approach that persists in EEG literature is blind source
separation (BSS). First studied in our laboratory during the first half
of the 80’s (Ans et al., 1985; Hérault and Jutten, 1986) BSS has en-
joyed considerable interest worldwide only a decade later, inspired
by the seminal papers of Jutten and Herault (1991), Comon (1994)
and Bell and Sejnowski (1995). BSS has today greatly expanded
encompassing a wide range of engineering applications such as
speech enhancement, image processing, geophysical data analysis,
wireless communication and biological signal analysis (Hyvärinen
et al., 2001; Cichocki and Amari, 2002; Choi et al., 2005). Such
ubiquity springs from the ‘‘blind” nature of the BSS problem for-
mulation: no knowledge of volume conduction or of source wave-
form is assumed. The problem may be attacked from several
perspectives; several hundred BSS algorithms have been proposed
over the last 20 years with more added on every year. Typically,
such methods are based on the cancellation of second order statis-
tics (SOS) and/or of higher (than two) order statistics (HOS). Their
commonality resides in the assumption of a certain degree of
source spatial independence, which is precisely modeled by the can-
cellation of those statistics. Both HOS and SOS have been employed
with success in EEG. They are today established for denoising/arti-
fact rejection (Vigário, 1997; Jung et al., 2000; Vorobyov and Ci-
chocki, 2002; Iriarte et al., 2003; Joyce et al., 2004; Kierkels et al.,
2006; Fitzgibbon et al., 2007; Frank and Frishkoff, 2007; Halder
et al., 2007; Phlypo et al., 2007; Romero et al., 2008; Crespo-Garcia
et al., 2008), improving brain computer interfaces (Qin et al., 2004;
Serby et al., 2005; Wang and James, 2007; Dat and Guan, 2007;
Kachenoura et al., 2008) and for increasing the SNR of single-trial
time-locked responses (Cao et al., 2002; Sander et al., 2005; Lemm
et al., 2006; Tang et al., 2006; Guimaraes et al., 2007; Zeman et al.,
2007). Yet, it appears that only four of the many existing algo-
rithms have repeatedly occurred in EEG literature. They are known
as FastICA (Hyvärinen, 1999), JADE (Cardoso and Souloumiac,
1993), InfoMax (Bell and Sejnowski, 1995) and SOBI (Belouchrani
et al., 1997). FastICA, InfoMax and JADE are ICA (HOS) methods,
while SOBI is a SOS method. JADE and SOBI are solved by approxi-
mate joint diagonalization (Cardoso and Souloumiac, 1993; Pham,
2001b; Yeredor, 2002; Ziehe et al., 2004; Vollgraf and Obermayer,
2006; Li and Zhang, 2007; Fadaili et al., 2007; Degerine and Kane,

2007), a powerful algebraic tool which allows promising exten-
sions that we will consider in this study.

2. The BSS problem for the brain

For N scalp sensors and M 6 N EEG dipolar fields with fixed
location and orientation in the analyzed time interval, the linear
BSS model simply states the superposition principle discussed
above, i.e.,

vðtÞ ¼ AsðtÞ þ gðtÞ; ð1:0Þ

where v(t) 2 RN is the sensor measurement vector, A 2 RN�M is a time-
invariant full column rank mixing matrix, s(t) 2 RM holds the time-
course of the source components and g(t) 2 RN is additive noise,
temporally white, possibly uncorrelated to s(t) and with spatially
uncorrelated components. Our source estimation is given by

ŝðtÞ ¼ bBvðtÞ; ð1:1Þ

where B 2 RM�N is called the demixing or separating matrix. Hereafter
the caret indicates a statistical estimation. Although this is the clas-
sical BSS model we need a few clarifications for the EEG case: first,
by g(t) we model instrumental noise only. In the following we drop
the g(t) term because the instrumental (and quantization) noise of
modern EEG equipment is typically low (<1 lV). On the other hand,
biological noise (extra-cerebral artifacts such as eye movements and
facial muscle contractions) and environmental noise (external elec-
tromagnetic interference) may obey a mixing process as well, thus
they are generally modeled as components of s(t), along with cere-
bral ones. Notice that while biological and environmental noise can
be identified as separated components of s(t), hence removed,
source estimation will be affected by the underlying cerebral back-
ground noise propagating with the same coefficients as the signal
(Belouchrani and Amin, 1998). Second, the assumption of time-
invariance of the mixing process in (1.0) must apply only locally.
The demixing matrix is assumed fixed for a given temporal interval,
but may be allowed to change (slowly) across successive intervals
(Pham, 2001a; Li et al., 2006). Such a model allows changes in the
location and orientation of dipole layers over time. The assumptions
underlying model (1.0) are crucial for the success of the source
separation, thus will be reconsidered in more details in the
discussion.

3. A suitable class of solutions to the brain BSS problem

To tackle problem (1.1) assuming knowledge of sensor mea-
surement only we need to reduce the number of admissible solu-
tions. In this paper we are interested in weak restrictions
converging toward condition

ŝðtÞ ¼ GsðtÞ; ð1:2Þ

where s(t) holds the time-course of the true (unknown) source pro-
cesses and the system matrix

G ¼ B̂A � KP ð1:3Þ

approximates a signed scaling (a diagonal matrix K) and raw per-
mutation (P). Eq. (1.2) is obtained substituting (1.0) in (1.1) ignoring
the noise term in the former. Whether condition (1.2) may be satis-
fied is a problem of identifiability, which establish the theoretical
ground of BSS theory (Tong et al., 1990; Tong et al., 1991a,b; Tong
et al., 1993; Cardoso, 1998a; Pham and Cardoso, 2001; Pham,
2002; Theis, 2004). In turn, matching condition (1.2) implies that
we can recover faithfully the source waveform out of a scale (includ-
ing sign) and permutation (order) indeterminacy. The idea suits EEG
well, since the waveform bears meaningful physiological and clini-
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