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a b s t r a c t

An analytical approach is used to investigate dynamic responses of a track system and the poroelastic

half-space soil medium subjected to a moving point load under three-dimensional condition. The whole

system is divided into two separately formulated substructures, the track sub-system and the ground.

The ballast supporting rails and sleepers is placed on the surface of the ground. The rail is modeled by

introducing the Green function for an infinitely long Euler beam subjected to the action of the moving

point load and the reaction of sleepers represented by a continuous mass. Using the double Fourier

transform, the governing equations of motion are then solved analytically in the frequency–wave-

number domain. The time domain responses are evaluated by the inverse Fourier transform

computation for a certain load velocities. Computed results show that dynamic responses of the soil

medium are considerably affected by the fluid phase as well as the load velocity.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration assessments alongside railway tracks are becoming
of importance as a result of increasing speeds of modern trains.
Particularly, these problems are significantly important if the
track is laid on the ground of soft clay in which the shear wave
velocity may be as low as 40 m/s.

The three-dimensional problem of the steady-state motion of a
point load moving on the free surface has been considered by
Papadopoulos [1] and Eason [2] with different approaches.
Gakenheimer and Miklowitz [3] presented the transient re-
sponses in the interior of the elastic half-space for a suddenly
applied point load which then moves with a constant velocity
along the free surface. A closed-form solution for the normal
displacement of the surface of the half-space subjected to a
normal point force moving at a constant velocity on the surface of
an elastic half-space was given by Barber [4]. Barros and Luco [5]
extended the studies to the dynamic responses of a multi-layered
visco-elastic half-space generated by a buried point load moving
parallel to the surface of the half-space or a surface moving point
load. Cai et al. [6] and Liu et al. [7] studied the dynamic responses
of a poroelastic half-space under moving rectangular load using
different method. Vibration of a track system on the ground was
first considered by Kennedy and Herrmann [8,9], who gave an

analytical solution of infinite beam on the visco-elastic ground
under moving point load. Hung and Yang [10] presented a work
dealing with the dynamic responses of an elastic soil medium
subjected to a moving point load distributed by an elastic beam.
Kargarnovin et al. [11] and Kargarnovin and Younesian [12]
investigated the response of a Timoshenko beam on the Pasternak
visco-elastic half-space and nonlinear visco-elastic half space,
respectively. Sun [13] gave a closed-form solution of beam on the
visco-elastic subgrade subjected to a moving point load. Sheng
et al. [14] extended the investigations to the more realistic
layered ground system. Takemiya and Bian [15] and Picoux and
LeHouedec [16] studied the dynamic responses of a track system
on the ground subjected to a moving train load. Generally, there is
under-ground water in the considered soil medium, but the study
of the dynamic responses of a track system laying on a poroelastic
soil medium are rather limited. Jin [17] studied the responses of
an Euler beam on a poroelastic half-space subjected to a moving
point load. The existence of the water affects the wave propaga-
tion in the soil medium in some degree during the passage of the
train, and the track system distributes the load in a different way
to an Euler beam. The fully saturated poroelastic soil with a track
system model is a good choice to be used for the analysis of
dynamic responses of the track-ground system.

In this paper, an analytical approach is used to investigate the
dynamic responses of a track system and poroelastic half-space
soil medium subjected to moving point load. The whole system is
divided into two separately formulated substructures, the track
and the ground. On top of the ground, ballast is placed, supporting
the rails and the sleepers. The rail is modeled by introducing the
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Green function for an infinitely long Euler beam subjected to the
action of moving axle load and the reactions of the sleeper.
Sleepers are represented by a continuous mass. Using the double
Fourier transform, the governing equations of motion are then
solved analytically in the frequency–wave-number domain. The
time domain responses are evaluated by the inverse Fourier
transform computation for a certain load velocities. Computed
results show that dynamic responses of the soil medium are
considerably affected by the fluid phase as well as the load
velocity. Computed results of the proposed model are compared
with those of existing methods.

2. Governing equations and general solutions

2.1. Analytical solution of poroelastic half space

The system considered herein, shown in Fig. 1, consists of a
uniform porous elastic solid material, fully saturated by the
viscous fluid, and extended to infinity in x, y, z directions. The fluid
is free to flow throughout the entire upper surface. The rail is
described by introducing the Green function for an infinite long
Euler beam subjected to the action of the moving point load and
the reactions of the sleeper. Sleepers are represented by a
continuous mass and the effect of the ballast is considered by
introducing the Cosserat model for granular medium.

Based on the assumption of neglecting the apparent mass
density, the linearized dynamic equations of motion of a fully
saturated poroelastic are given by Biot [18] as:

mui,jjþðlþa2MþmÞuj,jiþaMwj,ji ¼ r €uiþrf
€wi ð1Þ

aMuj,jiþMwj,ji ¼ rf
€uiþm €wiþb _wi ð2Þ

where, ui, wi (i¼x, y, z) are the solid displacement components
and fluid displacement related to solid displacement along the x,
y, z directions; dots on ui and wi indicate the differential with
respect to time t; l and m are Lame constants; a and M are Biot’s
parameters accounting for compressibility of the two-phased
material; r and rf are the actual mass densities of the solid and
the fluid, respectively; m is a density-like parameter that depends
on rf and the geometry of the pores; b is a parameter accounting
for the internal friction due to the relative motion between the
solid and the pore fluid. The parameter b equals to the ratio
between the fluid viscosity and the intrinsic permeability of the

medium (b¼0 for the neglection of internal friction). The
constitutive relations can be expressed as:

sij ¼ ldijyþmðui,jþuj,iÞ�adijp ð3Þ

p¼�aMyþMB ð4Þ

where

B¼�wi,i ð5Þ

and y¼ui,i is solid strain; sij is the total stress component of bulk
material; p is the pore water pressure.

In this paper, the dimensionless coordinates are defined as:
xn¼x/a, yn¼y/a, zn¼z/a and the dimensionless time is defined as

t¼ ðt=aÞ
ffiffiffiffiffiffiffiffiffi
m=r

p
, in which a is the half width of the railway track.

The Fourier transform with respect to dimensionless time t is
defined as

~f ðx�,y�,z�,OÞ ¼
Z 1
�1

f ðx�,y�,z�,tÞe�iOtdt ð6Þ

and the inverse relationship is given by

f ðx�,y�,z�,tÞ ¼ 1

2p

Z 1
�1

~f ðx�,y�,z�,OÞeiOtdO ð7Þ

By making use of Eq. (6) and after some manipulations, Eqs.
(1)–(5) lead to the following form:
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The dimensionless parameters in the former equations are

defined as: l� ¼ l=m, M� ¼M=m, r� ¼ rf=r, m� ¼m=r,

b� ¼ ab=
ffiffiffiffiffiffiffirmp , W¼ r�O2=ðm�O2

�ib�OÞ and r2 is the Laplacian

operator defined by:
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From Eqs. (8)–(11) the following equation can be obtained:

r4 ~pþa1r
2 ~pþa2 ~p ¼ 0 ð12Þ

in which

a1 ¼
ðm�O2

�ib�OÞðl�þa2M�þ2ÞþM�O2
�2aM�r�O2

ðl�þ2ÞM�
ð13Þ
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The Fourier transforms with respect to the dimensionless x-
and y-coordinates is defined as

f ðx,Z,z�,OÞ ¼
Z 1
�1

Z 1
�1

f ðx�,y�,z�,OÞe�iðxx�þZy�Þdxdy ð15Þ

and the inverse relationship is given by

f ðx�,y�,z�,OÞ ¼
1

4p2

Z 1
�1

Z 1
�1

f ðx,Z,z�,OÞeiðxxþZyÞdxdZ ð16Þ

The application of Fourier integral transforms to Eqs. (3), (4),
(8)–(11) lead to:

~p ðx,Z,z�,OÞ ¼ Aðx,Z,OÞe�g1z�þBðx,Z,OÞe�g2z� ð17Þ
Fig. 1. (a) Rail-sleeper–ballast-ground interaction model. (b) Track system on a

poroelastic half-space.
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