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a b s t r a c t

A method based on empirical-mode decomposition (EMD) and vector autoregressive moving average

(VARMA) model is proposed for structural damage detection. The basic idea of the method is that the

structural damages can be identified as the abrupt changes in energy distribution of structural

responses at high frequencies. Using the time-varying VARMA model to represent the intrinsic mode

functions (IMFs) obtained from the EMD of vibration signal, we define a damage index according to the

VARMA coefficients. In the two examples given, the Imperial County Services Building and the Van Nuys

hotel are used as the benchmark structures to verify the effectiveness and sensitivity of the damage

index in real environments with the presence of actual noise. The analysis results show that the damage

index can indicate the occurrence and relative severity of structural damages at multiple locations in an

efficient manner. The damage index can also be potentially used for structural health monitoring, since

it is based on the time-varying VARMA coefficients. Finally, some recommendations for future research

are provided.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Structural damage detection is an important and challenging
issue in earthquake engineering. As a systemic research field, it
involves the interaction and integration of many disciplines such
as signal processing, stochastic process theory, structural dynamic
analysis, system identification, sensor technology, and numerical
simulation. The main purpose of structural damage detection is to
identify the occurrence (presence), location and type of damage to
quantify the damage severity and to predict the remaining service
life of the structure. Vibration data obtained from instrumented
structures are often used for this purpose.

Since last three decades, many damage detection methods
have been developed. Excellent review work on this topic is found
in [1–4]. The most commonly used damage detection methods
can be roughly divided into two categories. One is the method that
directly estimates the physical parameters such as stiffness
or damping ratios, and investigates their changes [1,5,6]. The
finite element (FE) model updating is one of the most frequently
used methods in this category. It uses the test (measured) data of
structure as a reference quantity, and modifies the mass, stiffness
and damping parameters of the corresponding FE model to obtain
best agreement between numerical results and test data. Then,

the geometric location and severity of structure damage is
determined according to the modification coefficients. To obtain
the modification coefficients, optimum algorithm is often used
with test data as objective functions. The other category mainly
consists of various vibration-based methods that monitor the
changes in modal parameters (modal frequency, mode shape and
modal damping). The basic premise of these methods is that
modal parameters are functions of the physical properties of
structure (mass, damping, stiffness and boundary conditions).
Therefore, the changes in physical parameters of structure will
cause changes in modal properties. Modal parameters are, in
many cases, easier to evaluate in the field; this category of
methods is more popular than the first one. And the modal
parameters, such as natural frequency, mode shape curvatures,
modal flexibility and its derivatives, modal stiffness, modal strain
energy (MSE), frequency response function (FRF), FRF curvatures,
modal assurance criterion (MAC), coordinate modal assurance
criterion (COMAC) and multiple damage location assurance
criterions (MDLAC), are frequently used in practical applications
[1–4]. However, the effectiveness of this category is usually
limited by the configuration of sensors, parameter estimation
error, measurement noise, and the sensitivity of modal para-
meters to structural damages. Continuous efforts to reduce such
limitations have given rise to some improved methods [7–13].
In addition, some more recent research has shown that extracting
physically meaningful information from vibration signals to detect
structural damages may be the new trend [14–25], which
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undoubtedly requires some more efficient methods to process the
vibration signals that are often nonlinear and nonstationary in
nature.

Among various signal processing methods the Hilbert–Huang
transform (HHT) developed by Huang et al. [26,27], is thought
to be particularly suitable for processing nonlinear and nonsta-
tionary signals. HHT consists of empirical-mode decomposition
(EMD) and Hilbert spectral analysis (HSA). The purpose of EMD is
to decompose a signal into a finite set of intrinsic mode functions
(IMFs), which admit well-behaved Hilbert transforms. HSA is
designated to calculate the instantaneous frequencies and
amplitude of IMFs through the Hilbert transform and to obtain
the time–frequency distribution of amplitude called Hilbert
spectrum. Though HHT has been successfully used in many fields
since its introduction [26,28–31], there still exist two limitations
associated with the restriction of the Nuttall theorem and larger
covariance (poorer frequency resolution and readability) of the
Hilbert spectrum at higher frequencies [32–34]. To address the
above problems, a time-varying vector autoregressive moving
average (VARMA) model-based method was proposed in [34], and
the preliminary results showed the method was quite effective.

As a further application of the improved HHT method, a
damage index derived from the time-varying VARMA coefficients
is proposed in this study to detect the structural damages. The
technical details of HHT have been reported in many literatures.
Therefore, only the improved HHT method is briefly reviewed in
the following section. Then, the damage index is described in
detail. In the two examples given, the Van Nuys hotel [20,21,41]
and the Imperial County Services Building [22–24] are used as the
benchmark structures to explore the effectiveness of the proposed
damage index. The recorded seismic responses are analyzed
using both the improved and the original HHT methods, and
the proposed damage index is applied to detect the structural
damages. Based on the damage detection results, the effectiveness
and limitations of the proposed method are discussed, and some
recommendations for future research are provided.

2. The improved HHT method

To circumvent the limitations of HHT, we have proposed a
time-varying VARMA model-based method to calculate the
instantaneous frequencies of IMFs and yield the Hilbert spectrum
[34]. The improved method is summarized as follows:

1. Perform the EMD to get all the n IMFs for a given signal x(k),
which is the same as the original HHT method.

2. Represent the n IMFs as a time-varying VARMA (p, q) model

yðkÞ ¼
Xp

i ¼ 1

FiðkÞyðk� iÞþ
Xq

i ¼ 1

YiðkÞuðk� iÞþuðkÞ; ð1Þ

where the vector y(k) consists of the n IMFs, i.e. y(k)=[c1(k),
c2(k),y, cn(k)]T

n�1 and ci(k) is the ith IMF. The autoregressive

coefficients Fi(k) and the moving average coefficients Yi(k) are
n�n matrices. The vector u(k) is an n-dimensional zero-mean
Gaussian white noise process with covariance matrix R(k) I,
where I is the unit matrix and R(k)40. The variable k indicates

the time instant t=kDt with Dt as the sampling interval. It has
been shown by Pandit [35] and Anderson [36] that a time-
varying n-dimensional VARMA (2m, 2m�1) model is equiva-
lent to a time-varying system with nm degrees of freedom
(DOF). As all the n IMFs are monocomponent signals, they
can be viewed as the n outputs of a time-varying n-DOF
system, and the n instantaneous eigenfrequencies (natural
frequencies) of the system can be designated as the instanta-
neous frequencies of the IMFs. Consequently, a time-varying

n-dimensional VARMA (2, 1) model can be used to represent
the n IMFs.

3. Recast the time-varying VARMA (p, q) model into state space
form

nðkÞ ¼ nðk� 1Þþvðk� 1Þ;

yðkÞ ¼ ½HðkÞnðkÞ�TþuðkÞ;

(
ð2Þ

where n(k)=[F1(k),y,Fp(k), Y1(k),y,Yq(k)]T
( np +nq)�n is

called state vector. v(k)=[v1(k), v2(k),y, vp+ q(k)]T
( np+ nq)�n is

Gaussian process noise and its mean and covariance are 0 and
Q(k) respectively. Q(k) is an symmetric positive definite matrix.
H(k)=[y(k�1)T,y, y(k�p)T, u(k�1)T, y, u(k�q)T]1� (np+ nq) is
called measurement vector.

4. Use the Kalman filter to estimate n(k) based on the above state
space model. For more details about the improved method
and the algorithm of Kalman filter, the readers can refer to
[18,34,37,38].

5. Define the system matrix A(k) as

AðkÞ ¼

U1ðkÞ U2ðkÞ � � � UpðkÞ

I 0 � � � 0

0 I 0

^ ^ ^

0 � � � I 0

2
6666664

3
7777775

np�np

ð3Þ

and decompose A(k) by taking eigenvalue decomposition

AðkÞ ¼CðkÞkðkÞCðkÞ�1; ð4Þ

where k(k)=diag[li(k)] for i=1, 2, y, np. Then, the instanta-
neous eigenfrequencies of the system are given as

fiðkÞ ¼ jjln½kiðkÞ�jj=2pDt: ð5Þ

Because the instantaneous eigenvalues li(k) appear in complex
conjugate pairs, one pair for each degree of freedom, we can
get n different instantaneous eigenfrequencies when p=2, i.e.
the instantaneous frequencies of the n IMFs.

6. For each IMF, define the envelope by a cubic spline through all
the maxima. Then use all the envelopes and instantaneous
frequencies to obtain the Hilbert spectrum.

Because all the IMFs are monocomponent signals, the time-
varying VARMA (2, 1) model is the optimal model. We do not
need to select the model order according to the commonly used
Akaike information criterion (AIC) or other criteria, which makes
the method easy to implement. Moreover, using a time-varying
VARMA model to represent the IMFs as the outputs of a time-
varying system with white noise inputs, the method is more
physically meaningful and can reduce the effect of the noise
yielded during the EMD procedure.

3. The damage index

As has been described above, when an n-dimensional VARMA
(2, 1) model is used in Eq. (1) to represent y(k) as the n outputs
of an n-DOF system to input u(k), the n pair of instantaneous
eigenvalues k(k) yield n different instantaneous mode frequencies
as given in Eq. (5). Similar to the instantaneous eigenvalues
k(k), the instantaneous eigenvectors W(k)=[W1(k), W2(k),y,
W2n(k)]2n�2n appear in complex conjugate pairs, one pair for
each mode, thus we can get n different instantaneous mode
shapes of the system. For the ith mode, the instantaneous mode
shape is defined as the last n components of the instantaneous
eigenvector W2i�1(k) [18,34–36].

In this study, the time-varying VARMA (2, 1) model is used to
represent all the n IMFs of a given signal x(k) as the outputs of a
time-varying system to white noise inputs, and x(k) is taken as the
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