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A B S T R A C T

The conversion of point observations to a geographic field is a necessary step in soil mapping. For
pursuing goals of mapping soil carbon at the landscape scale, the relationships between sampling scale,
representation of spatial variation, and accuracy of estimated error need to be considered. This study
examines the spatial patterns and accuracy of predictions made by different spatial modelling methods
on sample sets taken at two different scales. These spatial models are then tested on independent
validation sets taken at three different scales. Each spatial modelling method produced similar, but
unique, maps of soil organic carbon content (SOC%). Kriging approaches excelled at internal spatial
prediction with more densely spaced sample points. Because kriging depends on spatial autocorrelation,
kriging performance was naturally poor in areas of spatial extrapolation. In contrast, the spatial
regression approaches tested could continue to perform well in spatial extrapolation areas. However, the
problem of induction allowed the potential for problems in some areas, which was less predictable. This
problem also existed for the kriging approaches. Spatial phenomena occurring between sampling points
could also be missed by kriging models. Use of covariates with kriging can help, but the requirement of
capturing the full feature space in the map remains. Methods that utilize spatial association, such as
spatial regression, can map soil properties for landscape scales at a high resolution, but are highly
dependent on the inclusion of the full attribute space in the calibration of the model and the availability
of transferable covariates.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Erosion and deposition processes redistribute large amounts of
mineral soil and soil organic carbon (SOC) across agricultural
landscapes (Van Oost et al., 2007). SOC dynamics at the landscape
scale show fluctuations in space and time that challenge research
on soil and SOC erosion (Kirkels et al., 2014). A key component for
monitoring carbon dynamics in soil landscapes is converting point
observations to areally extensive maps. This transition from
sample points to a geographic field necessitates some type of
spatial prediction. Reasons of practicality limit the quantity of
points that can be sampled and fewer samples mean the map must
depend more upon the spatial prediction methods (Webster and
Oliver, 1990). Nonetheless, the design of sampling locations can be

done strategically to optimize their utility for the spatial model.
Previous studies have examined the effect of sampling distribution
within the same extent (spatial domain) with respect to different
modelling methods (Mueller and Pierce, 2003; Corwin et al., 2010;
Schmidt et al., 2014). However, for mapping landscapes, issues of
scale, representativeness, and uncertainty become increasingly
important and that is the focus of this research.

Methods for spatial prediction commonly described as spatial
interpolation (e.g., inverse distance weighting, kriging) rely on
spatial autocorrelation (Burgess and Webster, 1980; Goovaerts,
1999; Schloeder et al., 2001). For this reason, greater sampling
density increases the spatial support of the model and prediction
error increases with distance away from sampling points. Similarly,
because these methods are intended only for spatial interpolation,
they are considered inappropriate for extrapolating beyond the
extent of the sampling points.

Recognizing the utility of spatial association approaches used in
traditional soil mapping (Odeh et al., 1994; McBratney et al., 2003),
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some varieties of kriging leverage spatial covariates to improve
predictions. Examples of approaches that incorporate spatial
association with spatial autocorrelation include co-kriging
(McBratney and Webster, 1983; Juang and Lee, 1998) and universal
kriging (Hengl et al., 2007; Li et al., 2015). The covariates used are
typically more easily measured than the target variable and thus
usually have better spatial coverage than samples of the target
variable. However, spatial autocorrelation still has an important
role in all forms of kriging. Thus kriging at the landscape scale
continues to present a conflict between the size of the mapping
extent and the number of observations that need to be taken to
produce an adequate sample density for the desired range of
uncertainty.

Approaches that rely more purely on spatial association have
become more quantitative and are using more sophisticated
techniques of predictor identification and spatial modelling. Some
examples include spatial regression or environmental correlation
(McKenzie and Austin, 1993; Moore et al., 1993), regression trees
(Adhikarietal.,2014;Lacoste etal., 2014;Milleretal., 2015a), random
forests (Vasques et al., 2010; Häring et al., 2012; Schmidt et al., 2014),
boosting algorithms (Häring et al., 2014) and artificial neural
networks (Tamari et al., 1996; Behrens et al., 2005). In contrast to
spatial autocorrelation techniques’ characteristic of prediction error
increasing with distance from samples, spatial association techni-
ques’ error depends on the model’s ability to fit equations to the full
feature space using available covariates. However, spatial autocor-
relationwould still suggest that areas further awayare more likely to
be outside the feature space of the sampled area. For these reasons,
studies have recommended stratification of the feature space to
optimize sampling designs for models utilizing this prediction
strategy (Gessler et al., 1995; Hengl et al., 2003).

Comparison of resulting maps should consider several factors.
Typically maps produced by models are evaluated by error
statistics for a single set of validation points, which provides a
quantitative comparison. However, spatial model realizations can

have similar performance metrics at the designated validation
points while still representing differing spatial structures (Mueller
and Pierce, 2003; Corwin et al., 2010 Adhikari et al., 2013). This
aspect can have implications for the interpretation of landscape
processes and the eventual use of the map, which should not be
overlooked. Similarly, different combinations of sampling designs
and spatial modelling methods will have different patterns of error
magnitude, which can also have bearing on the suitability of the
map for the desired purpose (McBratney et al., 2000). This study
considers each of these criteria in its comparison of maps for SOC%

at multiple scales.
We focus on the attribute of soil organic carbon content (SOC%)

in the topsoil because of its importance in monitoring and
modelling carbon dynamics in soil landscapes. The highest
concentrations and thus the largest storage of carbon is in the
topsoil. However, SOC% can be highly spatially variable, which
greatly impacts the mass balance of carbon at the landscape scale.
This soil property has been heavily-sampled for the CarboZALF
project under different sampling designs for different research
purposes. Therefore, these samples provide a unique opportunity
for comparing the nature and performance of spatial modelling
methods with respect to samples taken at different scales. The
objective of this study is to evaluate six spatial models, built from
two sample sets taken at different scales, in terms of their
prediction performance as well as the distribution and reliability of
their error estimations. As the spatial scales of the calibration and
validation point sets are shifted, the degree of extendibility or
transferability of the models is uniquely tested.

2. Methods

2.1. Study area

Situated in the Northeast German Plain, the site for this study
belongs to the main experimental area of the Leibniz Centre for

Fig. 1. Location of study area within the Uckermark district of northeast Germany.
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