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A B S T R A C T

In an ecosystem, soil organic matter (SOM) is an important indicator of soil fertility and soil quality.
Accurate information about the spatial variation of SOM is critical for sustainable soil utilization and
management in karst areas. This study was conducted to evaluate and compare spatial prediction of SOM
by using multiple linear stepwise regressions (MLSR), ordinary kriging (OK) and regression kriging (RK)
with terrain indices. Soil organic matter was estimated by using 149 observation data for Guohua Karst
Ecological Experimental Area, a 10 km2 study area in Guangxi Zhuang Autonomous Region, Southwest
China. Correlation assessment between SOM and terrain indices showed that there was a significant
correlation amongst 5 of the 8 pairs of indices. In the analysis of variance (ANOVA) applied in MLSR for
SOM using terrain indices, two models of independant terrain indices were set to perform the models of
MLSR. Relief degree of land surface (RDLS) entered into the regression equation for the first model (M1),
whereas RDLS and distance to ridge of mountains (DRM) entered into the regression equation for the
second model (M2). The assessment showed that the RK method combining with terrain indices obtained
a lower mean predication error (ME) and root mean square prediction error (RMSE). Compared with OK,
the application of RKM1 and RKM2 resulted in relative improvement (RI) of 13.87% and 15.61%,
respectively. This study showed that including terrain indices in regression kriging might improve SOM
prediction precision by up to 15% in the karst mountains.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil organic matter (SOM) is the major determinant and
indicator of soil fertility and quality, and is closely related to soil
productivity (Susanne and Michelle, 1998; Al-Kaisi et al., 2005;
Huang et al., 2007). From a global perspective, soils hold an
important terrestrial stock of carbon, approximately twice as much
as the atmosphere does, and triple as the terrestrial vegetation
(Eswaran et al., 1993; Davidson et al., 2000) does. The carbon in the
SOM of agricultural ecosystem is a dominant component of the
terrestrial C stock (Janzen et al.,1997). Managing soil C can enhance
productivity and environmental quality, and can reduce the
severity and costs of natural disasters, such as drought, flood
and disease (Chen and Aviad, 1990; Stevenson and He, 1990;
Blanco-Canqui and Lal, 2004). The reduction of SOM will result in a

decrease of soil nutrient supply, porosity and thus in soil
productivity (Gray and Morant, 2003), while increasing SOM can
reduce atmospheric CO2 ratio, which contributes to climate change
(Yadav and Malanson, 2007). So in order to utilize soils and protect
environment in a sustainable way, it requires a better understand-
ing of SOM content and its spatial variability.

In karst peak-cluster depression regions, there are positive and
negative landforms, namely peak-cluster and depression, which
make landforms in karst areas complex and changeful. In these
areas, there is severe soil erosion such that bedrock is exposed and
land productivity declines rapidly (Yuan, 1993; Cai, 1997; Huang
and Cai 2006; Zhang et al., 2011). As a result of this rapid soil
erosion, soils have become shallow and discontinuous, causing
desertification of the karst area. This has caused barriers in the
restoration of the karst. It is of important practical significance for
the process to master the spatial distribution of SOM in karst areas.
However, conventional soil survey methods for evaluating the SOM
in karst mountainous areas require a lot of time, effort and hence
relatively higher budget to perform.

Recently, studies on utilizing spatially correlated auxiliary
information to improve the prediction accuracy of soil properties
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have received considerable attention in pedometrics (McBratney
et al., 2003; Baxter and Oliver, 2005; Herbst et al., 2006; Takata
et al., 2007; Zhu et al., 2010). Terrain variable is the most commonly
used auxiliary information, which can enhance spatial prediction
of soil properties and reduces the cost of sampling in three aspects
(Pei et al., 2010). First, terrain variables are derived from a digital
elevation model (DEM), and can be easily acquired at a low cost.
Second, terrain variables are exhaustive and spatially extensive,
and can potentially provide voluminous data sets, which provide
relevant information on unsampled locations. The third and
perhaps the most important aspect is the significant correlation
between terrain variables and soil properties. Several previous
studies have illustrated the potential of utilizing terrain indices
(Mueller and Pierce, 2003; Simbahan et al., 2006; Pei et al., 2010;
Zhang et al., 2012) to get more precise spatial estimations of SOM.
However, few studies have been conducted in karst areas.

The objective of this paper was to select a suitable combination
of terrain indices to improve the spatial prediction of SOM using
regression kriging (RK). First, exploratory analyses were conducted
to examine the correlations between SOM and terrain indices.
Then, SOM was predicted spatially by ordinary kriging (OK),
multiple linear stepwise regressions (MLSR) and RK. The RK model
was based on the results of the exploratory analyses. By comparing
the mean error (ME) and the root mean squared error (RMSE) with
different spatial prediction methods, this paper explored whether
the introduction of auxiliary indices with exploratory analyses can
improve the prediction for a given prediction method.

2. Materials and methods

2.1. Study area

Guohua Karst Ecological Experimental Area (40�140–40�480N,
116�410–117�300E) is located in Pingguo County in Southwest
China, covering a total area of 10 km2 (Fig. 1). In the past, karst
rocky desertification seriously impacted the area. To protect the
fragile karst environment, the ‘Green for Grain’ program was
initiated in Southwest China, and Guohua Karst Ecological
Experimental Area was founded in 2001. Forests in hilly areas
have been effectively managed and protected, and illegal wood
cutting has been restrained. The vegetation has been partly
restored and karst rocky desertification has been relieved.
Topography in this area is characterized with typical karst
peak-cluster depression landscape (a combination of clustered
peaks with a common base) with the altitude ranging from 120 to
560 m above mean sea level. Climate is a subtropical monsoon
humid one with a mean annual temperature of 13–14 �C and

abundant but seasonally uneven rainfall. The annual mean
precipitation for the period from 1958 to 1992 was 1347 mm,
but over 86% of this amount fell during the rainy season (April–
October) (Yang et al., 2013). Various types of natural vegetation
occur in the study area, dominated by evergreen broad-leaved
forest and deciduous broad-leaved forest. The generally thin karst
soil is unevenly distributed because soil formation occurs slowly
and varies widely across the terrain. Soil types include mainly
calcareous, yellow and red soils, with calcareous soil covering
87.3% of the study area. Five land use categories occur in the study
area: forest land, grassland, cultivated land, water bodies and
urbanized areas (towns, roads and other urbanized areas).
Cultivated land includes dry and paddy land.

2.2. Soil sampling and soil analysis

The study area was 3.7 km wide from east to west and
2.9 km long from north to south. Soil samples were obtained
from the study area in August 2012 following a method on a
regular 140 m � 140 m grid. Because of the complex topology in
the study area, it is too difficult to reach some sample sites such
as the summit and steep slope. When some sample sites
distribute in the summits, steep slopes, water bodies or in
urbanized areas, the soil samples cannot be obtained. Therefore,
a total of 149 soil samples were obtained. The actual locations
of the sampling sites were recorded using a global positioning
system (GPS) receiver (Juno ST). Three to five soil sub-samples
were collected at a depth of 0–20 cm within a circle of radius
2 m surrounding the specified sampling location and mixed
thoroughly to make a composite sample. Then, 1.0 kg of this
composite soil sample was obtained and used for soil testing.
The samples were air-dried and ground to pass a 2-mm sieve.
The content of soil organic carbon (SOC) was determined by
using the potassium dichromate-wet combustion procedure,
and SOM was obtained by multiplying SOC by a conversion
factor (NSS, 1995).

All data were subject to exploratory analyses by producing
boxplots and Pauta Criterion to remove outliers (Zhang and Yuan,
1997). In this study, there were no outliers being removed
through the exploratory analyses. The soil sample data were
divided into two groups, i.e., training (interpolation) data, which
were used for the computation of spatial models, and test
(validation) data, which were used for validating the spatial
models; the latter representing about 20% of the whole sample
data. The training data and the test data were automatically
generated in ArcGIS software, using the Geostatistical Analyst
extension (Fig. 2).

Fig. 1. Location of Guohua Karst Ecological Experimental Area in Pingguo County of Guangxi Zhuang Autonomous Region, Southwest China.
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