

Journal of Neuroimmunology 196 (2008) 27-34

Journal of Neuroimmunology

www.elsevier.com/locate/jneuroim

Differential expression of neurokinin B and hemokinin-1 in human immune cells

Tilman E. Klassert ^a, Francisco Pinto ^b, Mariano Hernández ^a, M. Luz Candenas ^b, María Concepción Hernández ^c, Juan Abreu ^c, Teresa A. Almeida ^{a,*}

Received 26 November 2007; received in revised form 8 February 2008; accepted 11 February 2008

Abstract

The tachykinins are a group of related peptides that are mainly synthesized in the central and peripheral nervous system, but are also present in peripheral non-neuronal cells. In humans, substance P (SP) is the most extensively studied tachykinin and is present, along with the NK-1 receptor, in several inflammatory and immune cells. The release of SP under the appropriate stimulus may act as a paracrine or autocrine signal that may help to initiate and/or propagate inflammation. In the present study we have determined the expression pattern of NKB and HK-1 mRNA in human lymphocytes, monocytes, neutrophils and eosinophils. In addition, we have detected for the first time the presence of NKB protein in these cellular types. These findings reinforce the suggestion that tachykinins play a central role in the pathophysiology of the inflammatory process. © 2008 Elsevier B.V. All rights reserved.

Keywords: Tachykinins; Neurokinin B; Hemokinin-1; Human immune cells

1. Introduction

Substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and the recently identified hemokinin-1 (HK-1) are members of a family of structurally related peptides known as tachykinins (Kang et al., 2004; Zhang et al., 2006). They all share a common C-terminal region: \underline{FXGLM} -NH₂, where X denotes an aromatic of branched aliphatic amino acid residue. The mammalian tachykinins are derived from three distinct genes: TAC1 encodes for SP, NKA and two additionally extended forms of NKA (NPK and NP γ), TAC3 encodes for NKB, and TAC4 encodes for HK-1 (Kang et al., 2004; Zhang et al., 2006; Almeida et al., 2004). A more detailed analysis of the TAC4 gene in humans showed that it is spliced into four alternative transcripts (α -, β -, γ - and δ) that give rise to four different peptides which have been named endokinins (Page et

al., 2003). Endokinin A (EKA) and endokinin B (EKB) are Nterminally extended forms of HK-1, while endokinin C (EKC) and endokinin D (EKD) are tachykinin-related peptides with a different C-terminal signature motif (FQGLL-NH₂) (Page et al., 2003). Tachykinins exert most of their actions by interaction with specific membrane receptors. The presently known tachykinin receptors are named NK-1, NK-2 and NK-3, and in humans are encoded by the TACR1, TACR2 and TACR3 genes, respectively (Nakanishi, 1991; Gerard et al., 1993). SP, HK-1, EKA and EKB bind preferentially to the NK-1 receptor, NKA to the NK-2 receptor and NKB to the NK-3 receptor. However, the naturally occurring tachykinins are not highly selective and can act as full agonists on the three receptors (Pennefather et al., 2004; Almeida et al., 2004). Non-NK receptor-mediated effects of NKB and SP have also been reported (Grant et al., 2002; Lorenz et al., 1998).

Initially, tachykinins were considered as a group of neuropeptides because of their widespread distribution in the central and the peripheral nervous system. However, this

^a Instituto de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna, Avda. Astrofisico Francisco Sánchez s/n, 38271 La Laguna, Canarias, Spain
^b Instituto de Investigaciones Ouímicas. CSIC. Avda. Americo Vespucio 49, 41092 Sevilla. Spain

^c Departamento de Neumología, Hospital Universitario de Canarias, Ofra s/n-Carretera La Cuesta, 38071 La Laguna, Canarias, Spain

^{*} Corresponding author. Tel.: +34 922 316502x6116; fax: +34 922 318411. E-mail addresses: tacosalm@ull.es, tacosalm@gmail.com (T.A. Almeida).

terminology has been repeatedly challenged since tachykinins are also expressed in a variety of non-neuronal cells, such as human endothelial cells, inflammatory and immune cells, and even in the placenta, a tissue totally devoid of nerves (Page et al., 2000; Kang et al., 2004; Pennefather et al., 2004; Nelson et al., 2004). Moreover, HK-1 and the endokinins are predominantly expressed outside neural systems (Zhang et al., 2006). An overwhelming amount of functional data demonstrates the involvement of tachykinins, particularly SP, in the pathophysiology of inflammatory disease (O'Connor et al., 2004; De Swert and Joos, 2006). SP-induced release of inflammatory mediators such as cytokines, oxygen radicals, arachidonic acid derivatives and histamine potentiates tissue injury and stimulates further leukocyte recruitment, thereby amplifying the inflammatory response (Kang et al., 2004; O'Connor et al., 2004; De Swert and Joos, 2006). Moreover, SP promotes vasodilatation, leukocyte chemotaxis, and leukocyte/endothelial cell adhesion, which ensures the extravasation, migration and subsequent accumulacion of leukocytes at sites of injury (De Swert and Joos, 2006; Zhang et al., 2006). Among human inflammatory cells, TAC1 mRNA has been detected in lymphocytes (Lai et al., 1998) and monocytes/macrophages (Ho et al., 1997) obtained from peripheral blood samples. SP protein was also detected in the culture supernatants of these cells. In addition, immunoreactivity for SP has been observed in eosinophils and neutrophils (Aliakbari et al., 1987). Functional tachykinin NK-1 receptor is also expressed in macrophages, lymphocytes, neutrophils, dendritic cells and mast cells (De Swert and Joos, 2006; Zhang et al., 2006). An attractive hypothesis proposes that inflammatory cells use TAC1 geneencoded tachykinins as a paracrine or autocrine signalling mechanism to propagate inflammation beyond the limited topographic spread of the C-fibers and intrinsic neurons (Chavolla-Calderón et al., 2003). In fact, it has been shown that airways tachykinin input due to immune cells is essential for the progression of the inflammation (Chavolla-Calderón et al., 2003). This reveals a surprising and essential synergy between sensory C-fibers and hematopoietic cells in tachykininmediated inflammation (Kang et al., 2004).

There are no studies about the expression pattern of NKB and HK-1 in inflammatory and immune cells in humans. In rats, HK-1 is expressed in hematopoietic cells and it seems to play an important role in T and B lymphopoiesis (Zhang and Paige, 2003; Zhang et al., 2000). Expression of HK-1 has also been observed in murine monocyte and macrophage cells lines, and stimulation of these cells with proinflammatory cytokines decreases HK-1 and NK-1 receptor mRNA (Berger et al., 2007). Moreover, a decrease of TAC4 and TACR1 mRNA also occurs during monocytic differentiation. The authors conclude that HK-1 and the NK-1 receptor may play a role in the developing immune system (Berger et al., 2007). Nelson et al. (2004) showed TAC4 mRNA expression in mouse bone marrowderived macrophages and dendritic cells, and that maturation of dendritic cells resulted in significant reduction of TAC4 mRNA expression. The scenario is simpler for NKB, where only the expression of TAC3 mRNA in mice erythroid cells has been detected (Pal et al., 2004).

In humans, expression of β - and $\gamma TAC4$ has been detected in bone marrow (Page et al., 2003). The predicted proteins encoded by these transcripts include HK-1, EKB and EKD. The analysis of the expression pattern of the TAC3 gene in different human tissues also shows a clear amplification in human bone marrow (Pinto et al., 2004).

In the present study, we have analyzed the mRNA expression of TAC3 and TAC4 in polymorphonuclear cells (PMNs), lymphocytes, monocytes and eosinophils isolated from human peripheral blood samples as well as in T-lymphocytes obtained after stimulation with phytohaemagglutinin (PHA). Using quantitative PCR (Q-PCR) we have compared the expression of TAC3 and $\delta TAC4$ in lymphocytes and PHA-stimulated lymphocytes from seven healthy volunteers. In addition, we analyzed the presence of the NKB protein by immunocytochemistry.

2. Material and methods

2.1. Isolation of neutrophils, lymphocytes, monocytes and eosinophils

Blood samples from seven healthy adult donors who answered negatively to a screening questionnaire for respiratory symptoms (The European Community Respiratory Health Survey, ECRHS II) were obtained after informed consent. These include three females and four males (25–40 years of age).

In all cases, cells were stained with trypan blue to assess viability before counting on a hemocytometer. Cell yield for each sample was determined by staining slide fixed cells with May Grünwald-Giemsa and counting a minimum of 300 cells for each cellular fraction. Polymorphonuclear cells and mononuclear cells were isolated by using a gradient material, 1-Step Polymorphs (Accurate Chemicals and Scientific Corp., Westbury, NY), following the procedure recommended by the manufacturer. In brief, 20 ml of whole blood was collected in vacutainer tubes containing EDTA (Becton Dickinson, Oxford, UK). 5 ml of blood was carefully layered over 5 ml of 1-Step polymorphs in a 12 ml centrifuge tube. After centrifugation (500 ×g, 20 °C, 35 min), two leukocyte bands and a pellet of cells were visible. The top band consisted of mononuclear cells and the lower band of polymorphonuclear cells. The pelleted cells were kept on ice for further eosinophil isolation. Cellular fractions from the two bands were recovered separately and diluted 1:1 with NaCl 0.45%, centrifuged at 400 ×g, 4 °C, 10' and a hypotonic lysis was performed to remove contaminating erythrocytes. Neutrophils and mononuclear cells were pelleted again (400 ×g, 4 °C, 10') and washed once with sterile phosphate buffer saline (PBS). We obtained a viability of >98% in both cell fractions. The yields of polymorphonuclear and mononuclear fractions were >95% and >98%, respectively. To further isolate lymphocytes from monocytes, the mononuclear fraction was incubated with RPMI-1640 in a 2% gelatin-coated flask for 1 h at 37 °C. Non-adherent lymphocytes were collected from the supernatant of gelatin-coated flask and washed three times with PBS. Yield and viability was >95% and >98%,

Download English Version:

https://daneshyari.com/en/article/3065402

Download Persian Version:

https://daneshyari.com/article/3065402

<u>Daneshyari.com</u>