Soils and Foundations 2015;55(2):258-275

Model uncertainty of SPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming

Pradyut Kumar Muduli, Sarat Kumar Das*

Department of Civil Engineering, National Institute of Technology, Rourkela 769008, Odisha, India

Received 17 July 2013; received in revised form 4 November 2014; accepted 19 November 2014 Available online 16 March 2015

Abstract

In this paper, the model uncertainty of the developed standard penetration test (SPT)-based model for evaluation of liquefaction potential of soil is estimated within the framework of the first-order reliability method (FORM). First, an empirical model to determine the cyclic resistance ratio (*CRR*) of the soil is developed, based on the post-liquefaction SPT data using an evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). This developed resistance model along with an existing cyclic stress ratio (*CSR*) model forms a limit state function for reliability-based approach for liquefaction triggering analysis. The uncertainty of the developed limit state model is represented by a lognormal random variable, in terms of its mean and the coefficient of variation, estimated through an extensive reliability analysis following a trial and error approach using Bayesian mapping functions calibrated with a high quality post-liquefaction (F_s) is also developed for use in absence of parameter uncertainties. Two examples are presented to compare the present MGGP-based reliability method with the available regression-based reliability method.

© 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Keywords: Standard penetration test; Liquefaction index; Multi-gene genetic programming; Probability of liquefaction; Bayesian mapping function; Reliability index; Notional probability

1. Introduction

The first and perhaps the most important step toward mitigating liquefaction-induced damage is the evaluation of the liquefaction potential of a soil subjected to seismic loading. Though, different approaches like cyclic strain-based, energy-based and cyclic stress-based approaches are in use, the stress-based approach is the most widely used method for the evaluation of the liquefaction potential of soil (Kramer, 1996). Seed and Idriss (1971) pioneered the stress-

*Corresponding author.

E-mail addresses: pradyut.muduli@gmail.com (P.K. Muduli),

based simplified method and the procedure has been modified and improved by Seed et al. (1983, 1985) using standard penetration test (SPT)-based field performance data. The National Center for Earthquake Engineering Research (NCEER) workshop, 1998, published the reviews of in-situ test-based simplified method with recommendations for the evaluation of liquefaction potential of soil (Youd et al., 2001). Deterministic methods were discussed, which allow the liquefaction potential of soil to be evaluated in terms of the factor of safety against liquefaction (F_s), defined as the ratio of cyclic resistance ratio (*CRR*) to the cyclic stress ratio (*CSR*). However, due to parameter and model uncertainties, $F_s > 1$ may not always indicate non-liquefaction cases, and similarly, $F_s \le 1$ may not always correspond to liquefaction (Juang et al., 2000). The boundary curve that separates liquefaction and non-liquefaction

saratdas@rediffmail.com (S.K. Das). Peer review under responsibility of The Japanese Geotechnical Society.

http://dx.doi.org/10.1016/j.sandf.2015.02.003

^{0038-0806/© 2015} The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Abbreviations K_{σ}		K_{σ}	overburden correction factor
		L	liquefied cases
AAE	average absolute error	LI	liquefaction index
CDF	cumulative distribution function	M_w	earthquake magnitude on moment magnitude scale
COV	coefficient of variation	Ngen	number of generations
CRR	cyclic resistance ratio	NL	non-liquefied cases
$CSR_{7.5}$	cyclic stress ratio adjusted to a benchmark earth-	п	number of terms of target expression
	quake of moment magnitude of 7.5	N_m	measured SPT blow count
FORM	first order reliability method	$N_{1,60}$	corrected SPT blow count (i.e., corresponds to the
FOSM	first order second moment method		N_m value after correction for overburden, energy,
GP	genetic programming		equipment and procedural effects in SPT method)
LI	liquefaction index	$N_{1,60,cs}$	the equivalent clean-sand overburden stress cor-
MAE	maximum absolute error		rected SPT blow count
MGGP	multi-gene genetic programming	P_L	probability of liquefaction
MSF	magnitude scaling factor	R	correlation coefficient
PDF	probability density function	Ζ	performance function
RMSE	root mean square error	σ'_v	effective vertical stress at the depth under consideration
Symbols		σ_v	total vertical stress at the depth under consideration
C_B	correction for borehole diameter	a_{max}	peak horizontal ground surface acceleration
C_E	correction for hammer energy efficiency	r _d	stress reduction factor
C_N	factor to normalize N_m to a common reference	d_{max}	maximum depth of gene
	effective overburden stress	c_0	bias
C_R	correction for "short" rod length	μ_z	mean of performance function
C_S	correction for non-standardized sampler	σ_z	standard deviation of performance function
	configuration	β	reliability index
E	Nash-Sutcliffe coefficient of efficiency	p_f	probability of failure
E_{f}	error function	$\Phi(\cdot)$	CDF of standard normal variable
f	MGGP functions defined by the user	C_{mf}	model factor
F	liquefaction index function	μ_{cmf}	mean of c_{mf}
FC	fines content in percentage	β_1	reliability index without considering model
F_s	factor of safety against occurrence of liquefaction		uncertainty
g	acceleration due to gravity	β_2	reliability index considering model uncertainty
G_{max}	maximum number of genes		

cases in the deterministic methods is considered as a performance function or "limit state function" and is generally biased toward the conservative side by encompassing most of the liquefied cases. The degree of conservatism, however, is not quantified (Juang et al., 2000). In order to overcome the above mentioned difficulties in the deterministic approach, a probabilistic evaluation of liquefaction potential has been performed where liquefaction potential is expressed in terms of the probability of liquefaction (P_I) . Few attempts have been made by researchers to quantify the unknown degree of conservatism associated with the limit state function and to assess liquefaction potential in terms of the probability of liquefaction using statistical or probabilistic approaches. Haldar and Tang (1979) carried out second moment statistical analyses of the SPT-based test data using the limit state function introduced by Seed and Idriss (1971) to estimate the P_L . Lio et al. (1988), Youd and Nobble (1997) and Toprak et al. (1999) used logistic regression analyses of post-liquefaction field performance data to develop empirical equations for assessing P_L . These models are all data-driven as they are based on statistical analyses of the databases of post-liquefaction case histories. The calculation of P_L using these empirical models requires only the mean values of the input variables, whereas the uncertainty in the parameters and the model is excluded from the analysis. Thus, resulting P_L is subject to error if the effect of the parameter or the model uncertainty is significant. These difficulties can be overcome by adopting a reliability-based probabilistic analysis of liquefaction, which considers both model and parameter uncertainties. Juang et al. (1999) used the advanced first-order second moment (AFOSM) method to determine the reliability index (β) for liquefaction and non-liquefaction cases and developed a relationship between β and P_L using a Bayesian mapping function based on post-liquefaction CPT data. They used the ellipsoid method (Low and Tang, 1997) to determine the reliability index. Juang et al. (2000) developed a simplified method based on a post-liquefaction SPT database using the Bayesian mapping function approach to relate F_s with P_L . Juang et al. (2002) found that the Bayesian mapping function approach is better than the logistic regression approach for the site-specific probability of Download English Version:

https://daneshyari.com/en/article/307006

Download Persian Version:

https://daneshyari.com/article/307006

Daneshyari.com