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Abstract

In 1920, Prandtl published an analytical solution for the bearing capacity of a maximum strip load on a weightless infinite half-space. Prandtl
subdivided the sliding soil component into three zones: two triangular zones on the edges and a wedge-shaped zone in between the triangular
zones that has a logarithmic spiral form. The solution was extended by Reissner (1924) with a surrounding surcharge. Nowadays, a more
extended version of Prandtl's formula exists for the bearing capacity. This extended formulation has an additional bearing capacity coefficient for
the soil weight and additional correction factors for inclined loads and non-infinite strip loads. This extended version is known in some countries
as “The equation of Meyerhof”, and in other countries as “The equation of Brinch Hansen”, because both men have separately published
solutions for these additional correction factors. In this paper, we numerically solve the stresses in the wedge zone and derive the corresponding
bearing capacity coefficients and inclination and shape factors. The inclination factors are also analytically solved.
& 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

In 1920, the German engineer Ludwig Prandtl published an
analytical solution for the bearing capacity of soil under a limit
pressure, p, causing the kinematic failure of the weightless
infinite half-space underneath. The strength of the half-space is
given by the angle of the internal friction, ϕ, and the cohesion,
c. The solution was extended by Reissner (1924) with a
surrounding surcharge, q. Prandtl subdivided the sliding soil
part into three zones (Fig. 1):

1. Zone 1: A triangular zone below the strip load with a width
B¼ 2Ub1. Since there is no friction on the ground surface,
the directions of the principal stresses are horizontal and
vertical; the largest principal stress is in the vertical direction.

2. Zone 2: A wedge with the shape of a logarithmic spiral,
where the principal stresses rotate 901 from Zone 1 to Zone
3. The pitch of the sliding surface equals the angle of
internal friction ϕ, creating a smooth transition between
Zone 1 and Zone 3 and also creating a zero frictional
moment on this wedge (see Eq. (13)).

3. Zone 3: A triangular zone adjacent to the strip load. Since
there is no friction on the surface of the ground, the
directions of principal stress are horizontal and vertical
with the vertical component having the smallest amplitude.

The interesting part of the solution is that all three zones are
fully failing internally, according to the Mohr–Coulomb failure
criterion, while the outer surfaces are simultaneously fully sliding,
according to the Coulomb failure criterion. Only the latter
criterion exists in the case of a Bishop slope stability calculation.
The analytical solution for the bearing capacity of this three-zone
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problem by Prandtl and Reissner can be written as

p¼ cNcþqNq ð1Þ
where the bearing capacity coefficients are given as

Nq ¼Kp � exp π tan ϕð Þ
Nc ¼ Nq�1

� �
cot ϕ

with : Kp ¼
1þ sin ϕ

1� sin ϕ
ð2Þ

This equation has been extended by Keverling Buisman
(1940) for the soil weight, γ. Terzaghi (1943) wrote this
extension as:

p¼ cNcþqNqþ
1
2
γBNγ : ð3Þ

Keverling Buisman (1940); Terzaghi (1943); Meyerhof (1951,
1953, 1963); Caquot and Kérisel, 1953; Brinch Hansen (1970);
Vesic (1973) and Chen (1975) subsequently proposed different
equations for the soil weight-bearing capacity coefficient, Nγ .
The equation by Brinch Hansen (note Brinch Hansen and not
Hansen as presented in many texts), for the soil weight bearing
capacity coefficient, was based on calculations of Lundgren-
Mortensen and also of Odgaard and Christensen. The Chen
equation for the soil weight-bearing capacity coefficient became
the currently used equation

Nγ ¼ 2 Nq�1
� �

tan ϕ: ð4Þ
This solution is rather close to the solution of Michalowski
(1997) using the limit analyses and also the numerical results of
Zhu and Michalowski (2005).

In 1953, Meyerhof was the first to propose equations for
inclined loads. He was also the first, in 1963, to write the
following formula for the vertical bearing capacity with both
inclination factors and shape factors:

pv ¼ icsccNcþ iqsqqNqþ iγsγ
1
2
γBNγ: ð5Þ

Further, he proposed equations for both the inclination
factors and shape factors.

More recently, Brinch Hansen (1970) also wrote a formula
for the bearing capacity like Eq. (5), but proposed other
inclination and shape factors. This explains why in some
countries Eq. (5) is known as “The equation of Meyerhof”, and
in other countries as “The equation of Brinch Hansen”. In
addition, in some countries, mainly in Asia, people work with
the older “Equation of Terzaghi”.

The inclination factors and shape factors of both Meyerhof
and Brinch Hansen will be numerically evaluated in this paper.

2. Numerical approach for determining the bearing
capacity coefficients

The three-zone problem of Prandtl can be solved using a
numerical approach to determine the bearing capacity coeffi-
cient as a function of the angle of internal friction ϕ. The
definitions of the parameters are shown in Fig. 1.
The Mohr–Coulomb failure criterion defines the angles in

the triangular zones as

θ1 ¼
1
4
π� 1

2
ϕ and θ3 ¼

1
4
πþ 1

2
ϕ so θ1þθ3 ¼

1
2
π: ð6Þ

The length of both legs of the triangle can be determined from
the width of the load strip ðB¼ 2Ub1Þ and the size and shape
of the logarithmic spiral, namely,

rðθÞ ¼ r1 Uexp θ�θ1ð Þ tan ϕð Þ ð7Þ
giving

r3
r1

¼ exp
1
2
π tan ϕ

� �
and

b3
b1

¼ r3
r1

tan θ3: ð8Þ

2.1. Zone 3

For Zone 3, the vertical stress is given by the surcharge
ðσv ¼ q¼ qminÞ and the horizontal stress is given by the
Mohr–Coulomb criterion as follows:

σh ¼ σmax ¼ σminKpþ2c
ffiffiffiffiffiffi
Kp

p
with Kp ¼ 1þ sin ϕ

1� sin ϕ
¼ tan 2θ3:

ð9Þ
The normal stress, σ3, is found using the principle of force

equilibrium. The normal stresses are then split into different
bearing components:

σ3;q
q

¼ Kp U cos 2θ3þ sin 2θ3 ¼ 2 sin 2θ3;

σ3;c
c

¼ 2
ffiffiffiffiffiffi
Kp

p
U cos 2θ3 ¼ cos ϕ: ð10Þ

Fig. 1. Parameters used in the numerical approach to the wedge by Prandtl.
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