Atlas computarizado para la planificación de neurocirugías estereotácticas funcionales guiadas por imágenes

M. Carballo-Barreda; R. Rodríguez-Rojas; A. Torres-Montoya y G. López-Flores

Grupo de Procesamiento de Imágenes y Servicio de Neurocirugía. Centro Internacional de Restauración Neurológica. Ciudad de la Habana. Cuba.

Resumen

Objetivo. Desarrollar un atlas estereotáctico computarizado de Schaltenbrand y Wahren para la planificación de neurocirugías funcionales guiadas por imágenes. Este atlas está integrado al sistema de planificación STASSIS, desarrollado para computadoras personales.

Métodos. Los cortes originales del atlas fueron digitalizados y se trazaron los contornos para ambos hemisferios. El corregistro del atlas con las imágenes del paciente se realiza mediante transformaciones rígidas y no rígidas. Se presentan las herramientas computacionales implementadas y sus aplicaciones durante el procedimiento quirúrgico.

Resultados. El sistema permite la navegación continua tanto a través de los cortes originales como de las reconstrucciones, la sincronización de múltiples vistas y el uso de ampliaciones, lo que permite incrementar la exactitud en la localización de las comisuras y los blancos quirúrgicos, así como la selección óptima de las trayectorias. Los contornos del atlas se pueden ajustar a la anatomía del paciente. La posición del atlas en la región del blanco se puede actualizar de forma interactiva y simular la posición y volumen de las lesiones.

Conclusiones. Los beneficios de esta metodología incluyen la mejora en la exactitud de la localización del primer blanco quirúrgico, disminución del número de trayectos con los electrodos y, por tanto, del tiempo de la cirugía, y la reducción de las posibles complicaciones quirúrgicas.

PALABRAS CLAVE: Atlas cerebral. Estereotaxia. Neurocirugía funcional. Sistema de planeamiento.

Computerized atlas for image-guided stereotactic functional neurosurgery

Summary

Objective. A computerized version of the Schaltenbrand

Recibido: 15-01-07. Aceptado: 25-02-07

and Wahren's stereotactic brain atlas for image-guided functional neurosurgery planning has been developed and integrated into our PC-based planning system.

Methods. The SW atlas plates were digitized, contoured and labeled for both hemispheres. The computerized atlas may be interactively registered with patient's data using linear and non-linear transformation. The implemented computational tools and applications are presented.

Results. Our computer system permits navigation through original or reconstructed slices, multiple-views synchronization and zoom to improve the localization of the commisures and the surgical targets, likewise the optimum path selection. Atlas position in the target's region can be interactively actualized and lesion's position and volume may be simulated.

Conclusions. Its benefits of this approach include increased accuracy of target definition, decreased the number of electrode tracts and for instance the time of the surgery, and reduced surgical complications.

KEY WORDS: Brain atlas. Stereotaxy. Functional neurosurgery. Planning system.

Introducción

A pesar del avance en las técnicas de adquisición de imágenes médicas, el proceso de localización de los blancos quirúrgicos en la neurocirugía funcional sigue siendo complejo, y se basa esencialmente en la experiencia del equipo que realiza la cirugía. Las imágenes de Tomografía Axial Computarizada (TAC) no ofrecen el detalle anatómico necesario para reconocer entre estructuras cerebrales con poco contraste físico (en términos de absorción de los rayos X) con el tejido circundante, como es el caso de los ganglios basales. Las imágenes de Resonancia Magnética Nuclear (RMN) poseen mejor contraste anatómico que las de TAC para tejidos blandos, pero generalmente están afectadas por distorsiones geométricas, lo que puede afectar significativamente la exactitud en la localización de los blancos^{8,16,18,24}. El uso de marcos estereotácticos introduce artefactos debidos a cambios bruscos en la susceptibilidad

Figura 1. Interfaz del sistema STASSIS donde se observan las tres series del atlas digital de Schaltenbrand & Wahren superpuestas a sus respectivos cortes anatómicos.

magnética^{8,16,24}, lo que contribuye al incremento de las distorsiones geométricas. A esto se agrega que los sistemas de RMN estándar aún tienen limitaciones para la diferenciación exacta de los bordes anatómicos de los ganglios basales.

Una alternativa para incrementar la exactitud en la localización de los blancos quirúrgicos, es obtener información anatómica a partir de un atlas digitalizado adaptado al paciente^{4,12-14,17,23}. La complejidad de la citoarquitectura cerebral y la variabilidad inter-sujetos han hecho de los atlas una herramienta indispensable para manipular, analizar e interpretar la información imagenológica en el proceso pre e intra-operatorio.

En el presente trabajo presentamos un atlas estereotáctico digitalizado, basado en el atlas de Schaltenbrand y Wahren (SW)¹⁵, para ser usado en la planificación pre e intra-operatoria de cirugías funcionales para trastornos del movimiento. Este atlas fue integrado en un sistema computarizado para la planificación de cirugías estereotácticas, desarrollado en el Centro Internacional de Restauración Neurológica (CIREN)⁴. Se presentan y discuten las herramientas computacionales implementadas, sus aplicaciones en diferentes etapas del procedimiento quirúrgico, así como las ventajas y desventajas del uso del atlas electrónico de SW.

Métodos

Digitalización y visualización

Los 57 cortes de las series horizontal, frontal y sagital del atlas SW¹⁵, previamente digitalizados y vectorizados, fueron integrados al sistema de planificación STASSIS (CIREN, Habana, Cuba), el cual permite la planificación de múltiples aplicaciones neuroquirúrgicas guiadas por imágenes. Las imágenes de TAC o RMN del paciente se muestran conjuntamente con la información correspondiente de los contornos de las estructuras presentes en el atlas. Este procedimiento ha sido implementado para los cortes axiales, coronales y sagitales (figura 1). Al señalar una estructura se reporta su nombre, así como la identificación del corte del atlas que es visualizado.

Metodología de planificación

La metodología para la realización de neurocirugías

Download English Version:

https://daneshyari.com/en/article/3071847

Download Persian Version:

https://daneshyari.com/article/3071847

<u>Daneshyari.com</u>