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Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of
electrical activitymeasured on the scalp. The solution of these techniques depends directly on the accuracy of the
forwardmodel that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source
reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM)
software. The framework allows us to compare different forward modeling approaches, using real data, instead
of usingmore traditional simulated data from an assumed true forwardmodel. In the absence of a subject specific
MR image, a 3-layered boundary element method (BEM) template head model is currently used including a
scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on
the finite differencemethod (FDM). We constructed a FDM headmodel equivalent to the BEMmodel and an ex-
tended FDM model including CSF. These models were compared within the context of three different types of
source priors related to the type of inversion used in the PEB framework: independent and identically distributed
(IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods
such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of
20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared
with the findings of previous studies using functional magnetic resonance imaging. We found very strong
evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the
use of realistic volumetric forward models can improve PEB EEG source reconstruction.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The aim of EEG source reconstruction is to estimate the generating
neuronal sources of electrical activity measured on the scalp, within
the brain. In general, three components can be distinguished. The first
component is associated with the definition of the solution space and
a parametric representation of the sources (e.g., the electrical current
dipole). The second component contains the information about the

physical and geometrical properties of the head. These two components
comprise a forward model of the EEG data that describes the electro-
magnetic field propagation of the sources through the various tissues.
The third component is an inverse technique that, according to a certain
criterion and the given forwardmodel, defines a unique source distribu-
tion (Phillips et al., 2005).

There exist several different forward modeling approaches depend-
ing on how the head is modeled and which source space is chosen. An
analytical solution is only possible for a highly symmetrical geometry
and homogeneous isotropic electrical conductivity. For othermore gen-
eral cases, numerical methods are required. These methods include the
finite elementmethod (FEM) (Wolters et al., 2002), the finite difference
method (FDM) (Hallez et al., 2005; Vanrumste et al., 2001) and the
boundary element method (BEM) (Mosher et al., 1999). The FEM and
the FDM make no assumptions about the shape of the head model
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and allow the estimation of the electrical potentials at any location in
the volume. The BEM is based on the hypothesis that the volume is di-
vided into subvolumes of homogeneous and isotropic conductivity
and the potentials are estimated only on the surfaces separating these
subvolumes. As a consequence the FEM and the FDM offer a more gen-
eral solution of the forward problem at the expense of the computation
time (Phillips et al., 2007).

In recent years, the inverse techniques have evolved from single di-
pole iterative searching methods to comprehensive distributed source
estimations for distributed source models (Michel and Murray, 2012;
Pascual-Marqui et al., 2009). In distributed models, the solution space
typically contains a large number of current dipoles at discrete points
within the brain, which leads to a largely underdetermined EEG inverse
problem. Bayesian approaches offer a natural way to introducemultiple
constraints, or priors, to regularize the solution (Baillet and Garnero,
1997; Grech et al., 2008; Henson et al., 2011; Lucka et al., 2012;
Michel et al., 2004; Wipf and Nagarajan, 2009). They allow a more de-
tailed description of the anatomical and functional a priori information
compared to the classical methods (Daunizeau et al., 2007; Luessi et al.,
2011; Ou et al., 2010).

A parametric empirical Bayesian (PEB) framework for distributed
sources was recently introduced and implemented in the widely used
Statistical Parametric Mapping (SPM) software package (http://www.
fil.ion.ucl.ac.uk/spm) (Henson et al., 2011). The framework allows inte-
gration of multiple constraints in the distributed source reconstruction
problem for EEG and MEG (Henson et al., 2009b, 2010). Furthermore,
the PEB framework allows us to compare forward models based on
the negative variational free energy bound on the Bayesian log evi-
dence. It provides an alternative way of testing forward models, using
(though conditional on) real data, rather than themore traditional sim-
ulated data from an assumed true forward model. Only a few forward
modeling approaches have been compared within the PEB framework
for MEG source reconstruction. Based on event related fields (ERF) for
visual processing of faces and scrambled faces, Henson et al. (2009a)
recommend to use a 3-layered Boundary Element Method (BEM)
approximation of the head containing 3 homogeneous isotropic
conducting compartments corresponding with the scalp, skull and
brain tissue.

To our knowledge, no prior studies have been published that used
the PEB framework to compare forward modeling approaches for EEG
source reconstruction. The forward model is however more crucial for
EEG source reconstruction than for MEG source reconstruction (Lew
et al., 2013). In this study we therefore extended the Henson et al.
(2009a) study to EEG forward modeling approaches. In the context of
group studies, we used an anatomical template MR image (i.e. the
Colin27 template (Mazziotta et al., 2001)) to construct the headmodels.
In addition to the currently used 3-layered BEM approach we intro-
duced models based on the finite difference reciprocity method
(Hallez et al., 2005; Vanrumste et al., 2001). As such we were able to
construct a head model including cerebrospinal fluid (CSF) segmented
from the template MRI.

In previous studies, EEG and MRI experiments in supine and prone
subject position experimentally proved how important the effect of
CSF on the EEG is (Rice et al., 2013). Also simulation studies showed
that it is crucial to model the CSF (Ramon et al., 2004, 2006;
Vanrumste et al., 2000), and it was recently shown that the CSF effect
is far bigger than differences in numerical errors between state-of-the-
art forward modeling approaches (Vorwerk et al., 2012). This study is
complementary to these studies by comparing different head models
with and without CSF using realistic EEG data.

Based on 96-channels ERP datasets of 20 subjects in 4 stimulus con-
ditions and using Bayesian model selection for group studies (Rigoux
et al., 2013; Stephan et al., 2009), we investigated the effect of using
three different template headmodels and three different types of source
priors related to the type of inversion used in the PEB framework. We
considered the default BEM model used in the SPM software, a FDM

model equivalent to the 3-layered BEM model and a FDM model ex-
tended with CSF compartments segmented from the template. Three
different types of source priors were compared for each of these head
models: independent and identically distributed (IID) sources, which
is equivalent to classical minimum norm approaches (Hämäläinen and
Ilmoniemi, 1994), coherence (COH) priors or smoothness priors similar
to methods such as LORETA (Pascual-Marqui et al., 1994) and multiple
sparse priors (MSP) (Friston et al., 2008). In addition, the reconstructed
activity was also compared with the findings of previous studies using
functional magnetic resonance imaging (fMRI) in similar stimulus
conditions.

In the next section we will present a general introduction to Bayes-
ian approaches to solve the EEG inverse problem for distributed sources,
followed by a short description of the source priors and the free energy
optimization approach in the PEB framework. Next, we introduce the
FDM forward modeling approach. For numerical validation, we first
compare the FDM approach numerically to a state-of-the-art BEM
approach based on an analytical spherical reference model. In the fol-
lowing subsections we will describe how we constructed the different
head models based on the anatomical template MR image. We explain
how we compared the models numerically and how we compared the
models for each of the assumed source priors using Bayesian model
selection based on free energy.

Methods

Bayesian framework for distributed EEG source reconstruction

We can represent the EEG measurements as a multivariate linear
model involving a distributed source model with fixed positions and
orientations (Dale and Sereno, 1992):

V ¼ Lm Jm þ ϵ ð1Þ

whereV ∈ ℝNc�Nt is the EEG dataset ofNc channels andNt time samples,
Jm ∈ ℝNd�Nt is the amplitude of Nd current dipoles located on the corti-
cal surfacewith fixed orientations perpendicular to it, ϵ ∈ ℝNc�Nt is zero
mean additive Gaussian noise and Lm ∈ ℝNc�Nd is a lead field matrix
linking the source amplitudes in Jm to the electrical scalp potentials in
V. The lead field matrix represents the forward modelm and embodies
the assumptions about the head model and which forward modeling
technique is used. We can write the likelihood associated with Eq. (1)
as (López et al., 2012):

p V j Jm;mð Þ ¼ N Lm Jm;Rð Þ ð2Þ

withN �ð Þ the multivariate normal probability density function and

R ∈ ℝNc�Nc the channel noise covariance. This leads to a posterior distri-
bution of the source activity via Bayes' rule:

pð Jm V ;mj Þ ¼ pðV Jm;mj Þp Jmð Þ
p V mj Þð ð3Þ

where p (Jm) represents the prior assumptions about the source activity
and p(V|m) is the model evidence. Because the number of sources (Nd)
is much higher than the number of channels (Nc) this is an ill-posed
problem. To solve the problem it is necessary to find an inverse operator

Mm ∈ ℝNd�Nc≈L−1
m :

cJm ¼ MmV : ð4Þ

This can be solved within the Bayesian framework by assuming that
both Jm and ϵ are zero mean Gaussian distributed:

p Jmð Þ ¼ N 0;Qð Þ ; p ϵð Þ ¼ N 0;Rð Þ ð5Þ
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