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The identification of phenotypic associations in high-dimensional brain connectivity data represents the next
frontier in the neuroimaging connectomics era. Exploration of brain–phenotype relationships remains limited
by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent
correction for multiple comparisons. Here, we propose a computationally efficient, data-driven technique for
connectome-wide association studies (CWAS) that provides a comprehensive voxel-wise survey of
brain–behavior relationships across the connectome; the approach identifies voxels whose whole-brain
connectivity patterns vary significantlywith a phenotypic variable. Using resting state fMRI data,we demonstrate
the utility of our analytic framework by identifying significant connectivity–phenotype relationships for full-scale
IQ and assessing their overlapwith existent neuroimagingfindings, as synthesized by openly available automated
meta-analysis (www.neurosynth.org). The results appeared to be robust to the removal of nuisance covariates
(i.e., mean connectivity, global signal, and motion) and varying brain resolution (i.e., voxelwise results are highly
similar to results using 800 parcellations). We show that CWAS findings can be used to guide subsequent seed-
based correlation analyses. Finally, we demonstrate the applicability of the approach by examining CWAS for
three additional datasets, each encompassing a distinct phenotypic variable: neurotypical development,
Attention-Deficit/Hyperactivity Disorder diagnostic status, and L-DOPA pharmacological manipulation. For each
phenotype, our approach to CWAS identified distinct connectome-wide association profiles, not previously at-
tainable in a single study utilizing traditional univariate approaches. As a computationally efficient, extensible,
and scalable method, our CWAS framework can accelerate the discovery of brain–behavior relationships in the
connectome.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The human connectome, comprising the complete set of neural in-
teractions in the brain, provides the framework for behavior and cogni-
tion (Craddock et al., 2013; Sporns, 2011; Sporns et al., 2005). A key
challenge for neuroscience is to understand the relationship between
inter-individual variations in the organization of functional systems

within the connectome, and environmental and phenotypic factors
(Akil et al., 2011; Biswal et al., 2010). Phenotypic variables such as
task performance, psychological traits, and disease states have been
found to be associated with variation within and between specific func-
tional brain circuits (Andrews-Hanna et al., 2010; Fornito and Bullmore,
2010; Greicius, 2008; Kelly et al., 2008, 2012; Zhuet al., 2008). However,
connectome-wide association studies (CWAS)permitting the exploration
of brain–behavior relationships across the entire connectome remain a
challenge as they entail a massive number of comparisons (Milham,
2012). For example, an investigation of connectivity for 25,000 voxels
requires considering more than 300 million voxel pairings.

As in genome-wide association studies (Burton et al., 2007;McCarthy
et al., 2008), investigations of connectome-wide associations typically
employ mass-univariate statistical analyses. In the univariate approach,
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a phenotypic measure is related to only one functional connection at a
time (e.g., between regions of interest [ROIs], or between voxels in a
whole-brain analysis); concurrent contributions from other connections
are necessarily ignored (Cole et al., 2010). The large number of statistical
tests entailed by this approach (thousands to millions) increases the
potential for false positives, requiring stringent correction for multiple
comparisons (Benjamini and Hochberg, 1995; Chumbley and Friston,
2009; Genovese et al., 2002; Hu et al., 2010; Worsley et al., 2005;
Zalesky et al., 2010a). In addition, visualization and interpretation of
results from such a massive number of univariate analyses in three
dimensions represent major challenges (e.g., visualization of the voxel-
wise connectome) (Margulies et al., 2013).

Multivariate learningmethods have been advocated as an alternative
approach for exploring connectivity-phenotype associations (Margulies
et al., 2010). In the multivariate framework, the simultaneous contribu-
tion of entire sets of functional connections to a phenotypic variable
(e.g., age, clinical diagnosis, behavioral performance) is evaluated. This
reduces the number of connectivity–phenotype evaluations to one per
set and thus reduces the scale of the multiple comparison problem.
Given that cognitive and perceptual processes are driven by patterns
of concurrent activity across distributed brain networks rather than
individual regions (Haynes and Rees, 2006; Norman et al., 2006), simul-
taneous assessment of multiple connections may capture connectivity–
phenotype relationships more accurately (Varoquaux and Craddock,
2013).While a variety ofmultivariate approaches can assess phenotypic
associations in the connectome (Varoquaux andCraddock, 2013), sever-
al factors led us to pursue multivariate distance matrix regression
(MDMR) (Anderson, 2001; McArdle and Anderson, 2001; Reiss et al.,
2010; Zapala and Schork, 2006). These include: 1) the ability to examine
more than one predictor variable at a time (i.e., covariates can be incor-
porated), 2) applicability for categorical and/or continuous variables,
3)minimal requirements for parameter-specific or analytic decision-
making (e.g., a user only needs to choose the distance measure), and
4) ease of interpretability due to regression-like analytic structure.
MDMR has also been shown to have excellent test level accuracy and
good statistical power (Schork et al., 2008; Zapala and Schork, 2006,
2012; Lin and Schaid, 2009).

Here, we provide a whole-brain framework for identifying pheno-
typic associations in the connectome. While the approach is illustrated
using several examinations of functional connectivity, it can also be
applied to structural connectivity. At each node in the connectome
(defined by voxels, brain areas, or parcellation units), we test whether
inter-individual whole-brain connectivity patterns are related to
differences in one or more phenotypic variables of interest. This is
accomplished using a two-step approach. First, for each node in the
connectome, we calculate a whole brain functional connectivity map,
and then calculate the similarity between the connectivity maps of all
possible pairings of participants using spatial correlation, yielding
an n × n matrix (n = number of participants). Then, at each node,
we use MDMR to test whether a variable of interest (e.g., a clinical
diagnosis) is associated with the between-subject distances: signifi-
cance is determined using permutation testing (Fig. 1). The end result is
a statistic for each node that indicates the strength of the relationship
between a phenotypic measure and variations in its connectivity pat-
terns across participants.

Our approach attempts to lower common barriers to effective
discovery science and full-brain exploration of the connectome
(Biswal et al., 2010; Van Horn and Gazzaniga, 2002); in particular, the
high computational demands and resulting necessity to incorporate a
priori information to constrain the problem. The proposed MDMR-
based framework does not require the user to pre-specify or estimate
the dimensionality of the data (as in independent component analysis
or clustering; Beckmann, 2012; Bellec et al., 2010; Damoiseaux et al.,
2006; Hartigan, 1975; Mckeown et al., 1998) or select parameters for
graph construction (as in network centrality-based approaches;
Buckner et al., 2009; Bullmore and Sporns, 2009; Bullmore and

Bassett, 2011; Zuo et al., 2012). The resolution of brain representations
(e.g., voxels) does not need to be reduced to facilitate computation, as is
commonwith graph theoretic analyses (Buckner et al., 2009; Cole et al.,
2010; Zalesky et al., 2010b). Finally, there is no need to select particular
seeds or networks, as in seed-based correlation analyses (Cole et al.,
2010).

Our primary demonstration and evaluation of the MDMR-based
CWAS approach focuses on the identification of connectome-wide
associations for IQ using resting state data from the publicly avail-
able Enhanced Nathan Kline Institute Rockland Sample (NKI-RS;
http://fcon_1000.projects.nitrc.org/indi/enhanced). Advantages of
this dataset include moderate sample size (n = 104) and multiple
resting-state scans (albeit with different imaging sequence parameters).
This enabled us to evaluate the robustness of our results, their overlap
with existing meta-analyses of IQ–brain relationships, and their utility
in guiding subsequent seed-based correlation analyses. The impact of
potential confound signals (e.g., motion), preprocessing strategies
(e.g., global signal regression), and brain parcellation strategies were
considered, aswell as overall differences inmeasured brain connectivity
from one individual to the next. In addition, we provide three other
examples of MDMR-based CWAS applications using a range of pheno-
types and experimental designs (Attention-Deficit/Hyperactivity
Disorder [ADHD] vs. controls, age-related developmental effects, and ad-
ministration of L-DOPA vs. placebo). A summary of our approach is pro-
vided in Fig. 1, and an overview of analyses is provided in Fig. 2. Code for
all analyses and figures in the paper are available online (https://github.
com/czarrar/cwas-paper).

Methods

Participants

We examined resting-state fMRI scans from four community-based
datasets (see Table 1 for demographics). The four datasets included:
1) IQ: healthy adults with Full Scale IQ estimated with the Wechsler
Abbreviated Scale of Intelligence (WASI) from the NKI-RS with ages
18 to 65 (http://fcon_1000.projects.nitrc.org/indi/enhanced; Nooner
et al., 2012); 2) Development: healthy individuals ranging from children
to young adults (http://fcon_1000.projects.nitrc.org/indi/retro/Power
2012.html; Power et al., 2012); 3) ADHD: typically developing children
and children meeting DSM-IV criteria for ADHD sampled from the NYU
site of the ADHD200 dataset that were matched for age and sex
(http://fcon_1000.projects.nitrc.org/indi/adhd200; Chabernaud et al.,
2012; Di Martino et al., 2011; Kelly et al., 2009; Koyama et al., 2011;
Mennes et al., 2012; Zuo et al., 2010); and 4) L-DOPA: healthy adults
administered 100 mg of L-DOPA or placebo double-blind on two sepa-
rate scan visits (Kelly et al., 2009). Datasets 1–3 and the placebo scans
from Dataset 4 are publicly available for download from the Interna-
tional Neuroimaging Data-sharing Initiative (INDI) at http://fcon_
1000.projects.nitrc.org.

Data acquisition

For the first dataset (IQ), imaging data were acquired using a
Siemens Tim Trio 3 T scanner with a 32-channel head coil at the Center
for Advanced Brain Imaging, NKI. Three different resting-state fMRI
scans were collected in the following order: (i) Scan 1, a multiband
echoplanar imaging (EPI) sequence (Moeller et al., 2010; Xu et al.,
2013) (900 time points, repetition time [TR] = 645 ms, echo time
[TE] = 30 ms, flip angle = 60°, 40 slices, voxel size = 3 × 3 × 3 mm),
(ii) Scan 2, a higher spatial resolution multiband EPI sequence (404
time points, TR = 1400 ms, TE = 30 ms, flip angle = 60°, 64 slices,
voxel size = 2 × 2 × 2 mm), and (iii) Scan 3, a standard EPI sequence
(120 time points, TR= 2500ms, TE=30ms, flip angle=80°, 38 slices,
voxel size = 3 × 3 × 3.33 mm). Scan 3 was not included in the present
study because its duration is half that of Scans 1 and 2, decreasing
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