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To further understand functional connectivity in the brain, we need to identify the coupling direction between
neuronal signals recorded from different brain areas. In this paper, we present a novel methodology based on
permutation analysis and conditional mutual information for estimation of a directionality index between two
neuronal populations. First, the reliability of this method is numerically assessed with a coupled mass neural
model; the simulations show that thismethod is superior to the conditional mutual informationmethod and the
Granger causalitymethod for identifying the coupling direction between unidirectional or bidirectional neuronal
populations that are generated by the mass neuronal model. The method is also applied to investigate the
coupling direction between neuronal populations in CA1 and CA3 in the rat hippocampal tetanus toxin model of
focal epilepsy; thepropagation direction of the seizure events could be elucidated through this coupling direction
estimation method. All together, these results suggest that the permutation conditional mutual information
method is a promising technique for estimating directional coupling betweenmutually interconnected neuronal
populations.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Synchronization analysis has been a focus of attention in the
biological systems (Rosenblum and Pikovsky, 2001; Rosenblum, 2002).
Synchronization between different brain areas has been the subject of a
number of studies in both the normal (e.g. Roelfsema, et al., 1997;
Steriade and McCormick, 1993; Miltner et al., 1999; Rodriguez et al.,
1999, Mizuhara and Yamaguchi, 2007; Cantero et al., 2009; Darvas et al.,
2009) and the diseased brain (e.g. Uhlhass and Singer, 2006 and within
references; Rudrauf et al., 2006; Amor et al., 2009; Darvas et al., 2009).

The synchronization between different brain areas cannot be
measured directly, but can be estimated by applying an appropriate
analysis method with neurophysiological signals. Many linear and
nonlinear time seriesmethods have been proposed (Pereda et al, 2005).
While most of these methods quantify the strength of synchronization,
more recent developments have attempted to estimate the synchroni-
zation direction. For example, a Granger causality method has been
proposed to estimate the coupling directions between neuronal signals
by measuring how the history of a neural series predicts the future of
another (e.g. Hesse et al., 2003; Brovelli et al., 2004; Seth, 2005;
Lungarella and Sporns, 2006; Wang et al., 2008). The Granger causality
methods can be successfully applied to linear models, however the
change in cross-prediction error could not be directly applied to non-
linear time series (Palus and Vejmelka, 2007). The information theory

based methods are also proposed to estimate the coupling direction
between neural series, including transfer entropy (Schreiber, 2000) and
conditional mutual information (Palus et al., 2001; Vejmelka and Palus,
2008). More discussions on the estimation methods of coupling
direction based on information theory can be found in Hlavackova-
Schindler et al. (2007). The instantaneous phases of interacting
oscillators can also be used to identify the coupling direction, including
the evolution map approach and the instantaneous period approach
(Rosenblum and Pikovsky, 2001; Rosenblum, 2002); unfortunately,
these two methods are based on the estimated instantaneous phase, so
that it is sensitive tonoise in the time series. Our previousworks showed
that the evolution map approach and the instantaneous period
approach are not very suitable for analyzing noisy and nonstationary
EEG recordings (Li et al., 2007a,b,c). In order to detect theweak coupling
direction of oscillators, the state-space and phase-dynamics approaches
have been proposed (Smirnov and Andrzejak 2005; Smirnov and
Bezruchko, 2003). The state-space approach requires optimal embed-
ding parameters and the phase-dynamics approach requires strong
oscillatory behaviour, so there are some limitations in the practical
applications, furthermore, these two approaches are also sensitive to
noise in the neural series.

Recently, the permutation analysis and conditional mutual infor-
mationwere integrated to estimate the coupling direction between two
cardiorespiratory series (Bahraminasab et al., 2008). In this study, we
will investigate whether or not the method can be used to estimate the
coupling direction between neuronal populations. This method is based
on the probability distribution of permutation and conditional mutual
information, so it is called permutation conditional mutual information
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(PCMI). Theperformanceof thePCMImethodwasassessedbyutilisinga
coupled neural mass model by comparing with the traditional
conditionalmutual information (CMI)method and theGranger causality
(GC) method. This method is then applied to real neural populations
recorded in the hippocampus of rats.

Methods

Conditional mutual information and directionality

Presumably two neuronal populations X={xt} and Y={yt} are
recorded from two different brain areas, respectively. The marginal
probability distribution functionsofX andY are denoted asp(x) and p(y),
respectively; the joint probability functionofX andY is denoted asp(x,y).
The entropy of X and Y is defined as

H Xð Þ = −∑
x∈X

p xð Þ log p xð Þ ð1Þ

and

H Yð Þ = −∑
y∈Y

p yð Þ logp yð Þ: ð2Þ

The joint entropy of H(X,Y) is defined as

H X;Yð Þ = −∑
x∈X

∑
y∈Y

p x; yð Þ logp x; yð Þ: ð3Þ

Then, the conditional entropy H(X|Y) of X given Y is given by

H X jYð Þ = −∑
x∈X

∑
y∈Y

p x; yð Þ logp x jyð Þ: ð4Þ

The common information contained in X and Y can be estimated by
the following mutual information calculation:

I X; Yð Þ = H Xð Þ + H Yð Þ−H X;Yð Þ: ð5Þ

The conditional mutual information (CMI) between two series X
and Ymay be calculated by the following equations (Palus et al., 2001;
Palus and Stefanovska, 2003):

IδX→Y = I X;Yδ jYð Þ = H X jYð Þ + H Yδ jYð Þ−H X;Yδ jYð Þ ð6Þ

and

IδY→X = I Y;Xδ jXð Þ = H Y jXð Þ + H Xδ jXð Þ−H Y ;Xδ jXð Þ ð7Þ

where Xδ(Yδ) is an observable derived from the state of the process X
(Y) δ steps in the future, i.e. Xδ:xt+ δ=xt (Yδ:yt+ δ=yt). The infor-
mation that is transferred from the process X (or Y) to the process
Y (or X) at some later points in time can be defined as

IX→Y =
1
N

∑
N

δ=1
IδX→Y ð8Þ

and

IY→X =
1
N

∑
N

δ=1
IδY→X ð9Þ

where the N is the maximal later points. Based on the conditional
mutual information, the directionality index between X and Y can be
defined by

DXY =
IX→Y−IY→X

IX→Y + IY→X

� �
: ð10Þ

The value of DXY ranges from −1 to 1. DXYN0 means that the
process X drives Y; DXYb0 means that the process Y drives X, and
DXY=0means that the interactions between X and Y are symmetrical.

In the calculation of the CMI, two issues should be considered: the
estimation of marginal probability functions and the selection of the δ
steps in Eqs. (6) and (7). The marginal probability functions of two
variables X and Y, and their joint probability function are often
estimated by means of histogram method. The histogram can be
constructed by segmenting the range of the data into equal sized bins,
the number of bins is denoted as NBin. In the histogram method, the
number of bins and bin sizes are first determined. The optimal
number of bins depends on a strong assumption about the shape of
the distribution, so until now there is no best number of bins for a
practical time series. Second is to select the δ steps in Eqs. (6) and (7),
the selection of the parameter depends on the phase difference of
information flow between two time series. The δ parameter value can
be selected by comparing the output at different δ values.

Permutation conditional mutual information

The EEG (electroencephalogram) or LFP (local filed potential) is a
continuously variable signal, the amplitude and frequency of which
change over time. Actually, the signals are composed of ascending and
descendingpatterns. The statistical analysis of these two simplepatterns
may help us to indicate the change of a dynamical system. To obtain
more complicatedpatterns fromadynamical signal,wemayset upmore
complicatedordinal rankings, for instance Fig. 1B,M#1,M#2,…,M#6, in
this study these different patterns are referred as ‘motifs’ (Olofsen et al.,
2008). M#1 and M#5 are different ‘slopes’; M#2 andM#4 are different
‘troughs’; M#3 and M#6 are different ‘peaks’. Thus, the EEG or LFP
signals consist of a sequence of ordinal motifs. Based on the probability
distribution of these motifs, a new complexity measure, called
permutation entropy, was proposed (Bandt and Pompe, 2002). The
permutation entropy has been successfully used to analyze neural
signals (Li et al., 2007a, b, c, 2008; Olofsen et al., 2008).

The algorithm for the calculation of the probability distribution of
motifs is very simple. Fig. 1(A) shows the original series (upper) and
the discrete points (bottom) for the short interval marked by a black
bar. For example, the first three points belong to M#5 pattern. The
main procedure of the algorithm is as follows:

(1) Given a sequence of motifs (order: m=3, so 3!=6 different
motifs, see Fig. 1(B)), including ‘slopes’, ‘peaks’ and ‘troughs’;

(2) An epoch of the neural signal is extracted and the number of
different motifs in the signal with different lag τ=1 or 2 are
estimated (seeing Fig. 1(A bottom));

(3) The probability of occurrence of each motif in the signal is
calculated (see Fig. 1(C)). Let f(M#i),ia(1:m!) denote the
frequency of motif in the time series, its relative frequency is
defined as

p M#ið Þ = f M#ið Þ= L− m−1ð Þτð Þ ð11Þ

where L is the length of the time series. In the following section,
the p(M#i) is simplified as px for the time series.

If we analyze two signals (one is Fig. 1(A), another signal is not
plotted here), the joint probability of occurrence of each motif in the
signals, pxy, can be calculated, as shown in Fig. 1(D). As can be seen in
Fig. 1D, theM#1 andM#5 are main cross-patterns between the X and
Y series, which means there is a drive–response relationship between
these two series. Similarly, we can also calculate the joint probability
of X, Y and Yδ, or X, Y and Xδ.

Based on the permutation analysis, the new probability distribution
functions, the new joint probability functions and the new conditional
probability functions of two series X and Y can be obtained. Then, a new
conditional mutual information can be obtained by means of Eqs. (8)
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