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This note presents a simple Bayesian filtering scheme, using variational
calculus, for inference on the hidden states of dynamic systems.
Variational filtering is a stochastic scheme that propagates particles
over a changing variational energy landscape, such that their sample
density approximates the conditional density of hidden and states and
inputs. The key innovation, on which variational filtering rests, is a
formulation in generalised coordinates of motion. This renders the
scheme much simpler and more versatile than existing approaches,
such as those based on particle filtering. We demonstrate variational
filtering using simulated and real data from hemodynamic systems
studied in neuroimaging and provide comparative evaluations using
particle filtering and the fixed-form homologue of variational filtering,
namely dynamic expectation maximisation.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Recently, we introduced a generic scheme for inverting dynamic
causal models of systems with random fluctuations on exogenous
inputs and hidden states (Friston et al., 2008). This scheme was
called dynamic expectation maximisation (DEM) and assumed that
the conditional densities on the system's states and parameters were
Gaussian. This assumption is know as the Laplace approximation
and imposes a fixed form on the conditional density. In this note, we
present the corresponding free-form scheme, which allows the
conditional density to take any form. This scheme is stochastic and
propagates particles over a free-energy landscape to approximate the
conditional density with their sample density. Both the ensuing
variational filtering and DEM are formulated in generalised
coordinates of motion, which finesses many issues that attend the

inversion of dynamic models and furnishes a novel approach to
Bayesian filtering.

The novel contribution of this work is to formulate the Bayesian
inversion of dynamic causal or state-space models in generalised
coordinates of motion. Furthermore, we show how the resulting
inversion scheme can be applied to hierarchical dynamical models
to disclose both the hidden states and unknown inputs, driving a
cascade of nonlinear dynamical processes.

This paper comprises four sections. The first reviews variational
approaches to ensemble learning, starting with static models and
generalising to dynamic systems. We introduce the notion of
generalised coordinates and the ensemble dynamics they entail.
The ensuing time-varying ensemble density corresponds to a
conditional density on the paths or trajectory of hidden states. In
the second section, we look at a generic hierarchical dynamic
model and its inversion with variational filtering. In the third
section, we demonstrate inversion of linear and nonlinear dynamic
systems to compare their performance with fixed-form approxima-
tions and standard (particle) filtering techniques. In the final
section, we provide an illustrative application, in an empirical
setting, by deconvolving hemodynamic states and neuronal activity
from fMRI responses observed in the brain.

Notation

To simplify notation we will use fx=∂x f=∂f /∂x to denote the
partial derivative of the function f, with respect to the variable x. We
also use x ̇=∂tx for temporal derivatives. Furthermore, we will be
dealing with variables in generalised coordinates of motion, which
will be denoted by a tilde; x~=[x,x′,x″,…]. This specifies the
position, velocity and higher-order motion of a variable. A point in
generalised coordinates can be regarded as encoding the instanta-
neous trajectory of a variable. However, the motion of this point
does not have to be consistent with the trajectory encoded; in other
words, the rate of change of position ẋ is not necessarily the motion
encoded by x′ (although it will be under Hamilton's principle of
stationary action, as we will see later). Much of what follows
recapitulates the material in Friston et al. (2008) so that interested
readers can see how the Laplace assumption builds on the basics
used in this paper.
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Variational Bayes and ensemble learning

This section reprises Friston et al. (2008), with a special focus
on ensemble dynamics that form the basis of variational filtering.
Variational Bayes or ensemble learning (Feynman, 1972; Hinton
and von Cramp, 1993; MacKay, 1995; Attias, 2000) is a generic
approach to model inversion that approximates the conditional
density p(ϑ|y,m) on some model parameters, ϑ, given a model m
and data y. We will call the approximating conditional density, q(ϑ)
a variational or ensemble density. Variational Bayes also provides a
lower-bound on the evidence (marginal or integrated likelihood)
p(y|m) of the model itself. These two quantities are used for
inference on parameter and model-space respectively. In what
follows, we review variational approaches to inference on static
models and their connection to the dynamics of an ensemble of
solutions for the model parameters. We then generalise the approach
for dynamic systems that are formulated in generalised coordinates
of motion. In generalised coordinates, a solution encodes a
trajectory; this means inference is on the paths or trajectories of a
system's hidden states.

Archambeau et al. (2007) motivate the importance of inference
on paths for models based on stochastic differential equations and
present a clever approach based on Gaussian process approxima-
tions. In the current work, the use of generalised motion makes
inference on paths relatively straightforward, because they are
represented explicitly (Friston et al., 2008). From the point of view
of dynamical systems, inference is on the temporal derivatives of a
system's hidden states, which are the bases of the functionals of the
free-flow manifold (Gary Green — personal communication).

Other recent developments in this area include extensions of
conventional Kalman filtering; for example, Särkkä (2007)
considers the application of the unscented Kalman filter to
continuous-time filtering problems, where both the state and
measurement processes are modelled as stochastic differential
equations. In this instance a continuous-discrete filter is derived as
a special case of the continuous-time filter. Eyink et al. (2004)
consider the problem of data assimilation into nonlinear stochastic
dynamic equations using a variational formulation that reduces the
approximate calculation of conditional statistics to the minimiza-
tion of ‘effective action'. In what follows, we will show that
effective action is a special case of a variational action that can be
treated in generalised coordinates.

Variational Bayes

The log-evidence for any parametric model can be expressed in
terms of a free-energy and divergence term

lnp yjmð Þ ¼ F þ D q #ð Þjjp #jy;mð Þð Þ
F ¼ Gþ H

G yð Þ ¼ hlnp y; #ð Þiq
H #ð Þ ¼ �hlnq #ð Þiq

ð1Þ

The free-energy comprises, G(y), which is the internal energy,
U(y,ϑ)= lnp(y,ϑ) expected under the ensemble density and the
entropy, H(ϑ)q which is a measure on that density. In this paper,
energies are the negative of the corresponding quantities in
physics; this ensures the free-energy increases with log-evidence.
Eq. (1) indicates that F(y,q) is a lower-bound on the log-evidence
because the Kullback-Leibler cross-entropy or divergence term,
D(q(ϑ)||p(ϑ|y,m)) is always positive. In other words, if the ap-

proximating density equals the true posterior density, the diver-
gence is zero and the free-energy is exactly the log-evidence.

The objective is to compute q(ϑ) for each model by maximising
the free-energy and then use F≈ ln p(y|m) as a lower-bound ap-
proximation to the log-evidence for model comparison (e.g., Penny
et al., 2004) or averaging (e.g., Trujillo-Barreto et al., 2004).
Maximising the free-energy minimises the divergence, rendering
the variational density q(ϑ)≈p(ϑ|y,m) an approximate posterior,
which is exact for simple (e.g., linear) systems. This can then be
used for inference on the parameters of the model selected.

Invoking q(ϑ) effectively converts a difficult integration problem,
inherent in marginalising p(y,ϑ|m) over the unknown parameters to
compute the evidence, into an easier optimisation problem. This rests
on inducing a bound that can be optimised with respect to q(ϑ). To
finesse optimisation (e.g., to obtain a tractable solution or suppress
computational load), one usually assumes q(ϑ) factorises over a
partition1 of the parameters

q #ð Þ ¼ j
i
q #i
� � ð2Þ

Generally, this factorisation appeals to separation of temporal
scales or some other heuristic that ensures strong correlations are
retained within each subset and discounts weak correlations
between them. Usually, one tries to use the most parsimonious
partition (and if possible, no factorisation at all). We will not
concern ourselves with this partitioning here because our focus on
one set of variables, namely time-dependent states.

In statistical physics this is called a mean-field approxima-
tion. Under this approximation, it is relatively simply to show
that the ensemble density on one parameter set, ϑi is a functional
of the energy, U= ln p(y,ϑ) averaged over the others. When there
is only one set, this density reduces to a simple Boltzmann
distribution.

Lemma 1. (Free-form variational density; see Corduneanu and
Bishop, 2001). The free-energy is maximised with respect to q(ϑi)
when

lnq #ið Þ ¼ V #ið Þ � lnZif

q #ið Þ ¼ 1
Zi

exp V #i
� �� �

V #i
� � ¼ hU #ð Þiq # q ið Þ

ð3Þ

where Zi is a normalisation constant (i.e., partition function).
We will call V(ϑi) the variational energy. ϑ\i denotes parameters
not in the i-th set or, more exactly, its Markov blanket. Note that
the mode of the ensemble density maximises variational energy.

Proof. The Fundamental Lemma of variational calculus states
that F(y,q) is maximised with respect to q(ϑi) when, and only
when

dq #ið ÞF ¼ 0fAq #ið Þf i ¼ 0R
d#if i ¼ F

ð4Þ

1 A set of subsets in which each parameter belongs to one, and only one,
subset.
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