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We studied the reactivity of EEG rhythms (mu rhythms) in association

with the imagination of right hand, left hand, foot, and tongue

movement with 60 EEG electrodes in nine able-bodied subjects. During

hand motor imagery, the hand mu rhythm blocked or desynchronized

in all subjects, whereas an enhancement of the hand area mu rhythm

was observed during foot or tongue motor imagery in the majority of

the subjects. The frequency of the most reactive components was 11.7

Hz T 0.4 (mean T SD). While the desynchronized components were

broad banded and centered at 10.9 Hz T 0.9, the synchronized

components were narrow banded and displayed higher frequencies at

12.0 Hz T 1.0. The discrimination between the four motor imagery

tasks based on classification of single EEG trials improved when, in

addition to event-related desynchronization (ERD), event-related

synchronization (ERS) patterns were induced in at least one or two

tasks. This implies that such EEG phenomena may be utilized in a

multi-class brain–computer interface (BCI) operated simply by motor

imagery.

D 2005 Elsevier Inc. All rights reserved.

Introduction

A fundamental property of a neural network is the ability of

neurons to work in synchrony and to generate oscillatory activity

(Lopes da Silva, 1991). One prominent group of such brain

oscillations has frequencies between 9–13 Hz in man and 12–15

Hz in cat and originates in sensorimotor areas. These activities are

known as ‘‘rolandic mu rhythms’’ or ‘‘wicket rhythms’’ in man

(Niedermeyer, 1993; Gastaut, 1952) and sensorimotor rhythms

(SMRs) in cat (Chase and Harper, 1971; Howe and Sterman,

1972).

It is well known that planning and execution of hand and/or

finger movement block or desynchronize the mu rhythm (Chatrian

et al., 1959), and inhibition of motor behavior synchronizes the

SMR (Howe and Sterman, 1972). The importance of such an

enhancement of 12- to 15-Hz oscillations for biofeedback therapy

was documented already in the seventies by Sterman et al. (1974)

and confirmed by Egner and Gruzelier (2001) and others. It was

already demonstrated that externally paced foot and tongue

movement and imagination of foot movement (Pfurtscheller and

Neuper, 1994, 1997) can enhance the hand area mu rhythm, similar

as observed during reading of words (Pfurtscheller, 1992), pattern

vision (Koshino and Niedermeyer, 1975) or flicker stimulation

(Brechet and Lecasble, 1965). This ability to suppress or enhance

the amplitude of the hand area mu rhythm consciously by directing

attention to different body parts or limbs is not only of interest to

suppress epileptic seizures by neurofeedback therapy (Sterman et

al., 1974) but also for realizing an EEG-based brain–computer

interface (BCI) with motor imagery as a mental strategy (Wolpaw

et al., 2002; Pfurtscheller and Neuper, 2001).

The goals of this paper are

(i) to study the inter- and intrasubject variability of event-

related EEG (de)synchronization patterns (ERD/ERS) in

four motor imagery tasks,

(ii) to study whether the same or different frequency compo-

nents are involved in desynchronization and synchroniza-

tion patterns recorded from the same cortical areas,

(iii) to report on the distinctiveness between four different motor

imagery tasks when single trials are analyzed and classified,

and

(iv) to provide recommendations for the realization of a multi-

class BCI with improved classification accuracy.

Methods

Subjects and experimental paradigm

Six female and three male healthy right-handed subjects

(mean age 26.2 years, range 21–31 years) participated in this
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study. They sat in a comfortable armchair in an electrically

shielded cabin watching a 15� monitor from a distance of about 2

m. Each trial started with a blank screen at second 0. At second

2, a fixation cross was presented at the center of the monitor until

the end of the trial at second 7. Simultaneously, a short warning

tone occurred at second 2. At second 3, an arrow, pointing either

to the left, right, up, or down representing one of four different

motor imagery tasks (left hand, right hand, both feet, and tongue,

respectively), appeared on the screen for 1.25 s. The period

between trials varied randomly between 0.5 and 2.5 s (Fig. 1,

right). The subjects were instructed to perform the indicated

motor imagery task up to second 7. During the motor imagery

task, in particular, the subjects should imagine the indicated

movement. They were asked to imagine the (kinesthetic)

experience of movement (rather than a visual type of imagery)

while remaining relaxed and avoiding any motion during

performance. The experiment was divided into 6 runs, consisting

of 40 trials each, which led to 60 repetitions of each type of

mental task. There were breaks of 3 to 5 min between the runs.

Within each run, the tasks were performed in a random order to

avoid adaptation.

EEG signals were recorded from a grid of 60 Ag/AgCl scalp

electrodes (using a cap by Easycap, Germany) referenced to the left

mastoid. The right mastoid electrode served as ground (Fig. 1, left).

The closely spaced electrodes with distances of approximately 2.5

cm were placed in a configuration including the electrode positions

C3, C4, Cz, Fz, and Pz of the international 10–20 system. The

signals were acquired with a SynAmps amplifier (NeuroScan,

USA) filtered between 1 and 50 Hz. An additional 50-Hz notch

filter was used. The data, including a rectangular trigger signal,

were sampled at 250 Hz.

To obtain reference-free EEG data, calculation of source

derivation based on the center and the four nearest neighboring

electrodes was performed (Hjorth, 1975)—for boundary electro-

des, an equivalent calculation was carried out based on the first,

second, or third nearest neighbors.

After triggering the data, trials of 10-s length were obtained

including 2 s before the warning tone. Single trials were visually

inspected for muscle and ocular artifacts, using the software

package g.BSanalyze (Guger Technologies, Graz, Austria). Trials

containing artifacts were eliminated.

Quantification of ERD/ERS

The quantification of ERD/ERS was carried out in four

steps: bandpass filtering of each trial, squaring of samples, and

subsequent averaging over trials and over sample points. The

ERD/ERS was expressed as percentage power decrease (ERD)

or power increase (ERS) in relation to a 1-s reference interval

before the warning tone (Pfurtscheller and Lopes da Silva,

1999). The statistical significance of the ERD/ERS values was

verified by applying a t percentile bootstrap statistic to calculate

confidence intervals with a significance level of a = 0.05. This

procedure was carried out for overlapping (by 1 Hz) 2-Hz

bands in the frequency range between 6 and 42 Hz (for details,

see Graimann et al., 2002). The time–frequency maps obtained

were used for selection of the alpha (mu) band rhythms with

the most significant band power increase or decrease during the

motor imagery tasks at the central electrode positions C3, Cz,

and C4.

Analysis and classification of single-trial EEG data

First, the monopolar (raw) EEG data was downsampled from

250 Hz to 125 Hz. Next, adaptive autoregressive (AAR)

parameters (of order 3) were estimated for every monopolar

channel (N = 60) and for every possible combination of bipolar

channels (N = 1770). Accordingly, 60 + 1770 = 1830 single

channel AAR estimates were obtained using the Kalman filtering

algorithm (for details, see Schlögl, 2000). Next, the AAR estimates

from each trial were divided into segments of 25 samples, i.e., 0.2

s. For each segment, a minimum Mahalanobis distance (MDA)

classifier across all trials was calculated and applied to the same

segment. This classifier is based on the so-called Mahalanobis

distance dc(x), which is defined as:

d2c xð Þ ¼ x� lcð ÞR�1c x� lcð ÞT :
Here, lc is the mean and Rc the covariance of the normally

distributed class c, estimated from the corresponding training

samples. For each testing point x in the n-dimensional feature

space, a distance to each class can be calculated, and x is then

assigned to the class with the smallest distance. That way, a simple

and robust statistical classifier can be obtained which is also

applicable to more than two classes.

Accordingly, an average measure for the classification accuracy

of the four class problem (four motor imagery tasks) for each

segment was obtained. As a measure of distinctiveness, the kappa

coefficient j (Kraemer, 1982) was used. In an M class classifica-

tion problem, the proper evaluation of the classifier is described by

its confusion matrix defining the relationship between the true

classes and the output of the classifier. From the confusion matrix

H, we can derive the classification accuracy ACC (overall

agreement) as follows:

ACC ¼ p0 ¼
1

N
~
i

Hii

The chance expected agreement is

pe ¼
~i noinio

NN
;

where N = ~i~jHij is the total number of samples, Hij are elements

of the confusion matrix H on the main diagonal, and noi and nio are

the sums of each column and each row, respectively. Then the

estimate of the kappa coefficient j is

j ¼ p0 � pe

1� pe

with chance probability pe = 1/M. For more details, see also Cohen

(1960), Bortz and Lienert (1998) and Kraemer (1982). To compute

the kappa coefficient, we used the implementation realized in the

BioSig toolbox (Schlögl, 2004).Fig. 1. Electrode positions (left) and experimental paradigm (right).
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