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Functional magnetic resonance imaging (fMRI) is widely used to

identify neural correlates of cognitive tasks. However, the analysis of

functional connectivity is crucial to understanding neural dynamics.

Although many studies of cerebral circuitry have revealed adaptative

behavior, which can change during the course of the experiment, most

of contemporary connectivity studies are based on correlational

analysis or structural equations analysis, assuming a time-invariant

connectivity structure. In this paper, a novel method of continuous

time-varying connectivity analysis is proposed, based on the wavelet

expansion of functions and vector autoregressive model (wavelet

dynamic vector autoregressive-DVAR). The model also allows iden-

tification of the direction of information flow between brain areas,

extending the Granger causality concept to locally stationary

processes. Simulation results show a good performance of this

approach even using short time intervals. The application of this

new approach is illustrated with fMRI data from a simple AB motor

task experiment.
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Introduction

Functional neuroimaging using the BOLD (Blood Oxygen Level

Dependent) effect has received considerable attention in the last

decade and has become a powerful tool in cognitive neuroscience.

Impressive methodological progress has been made since the first

description of the effect (Ogawa et al., 1990) and a large number of

statistical methods for data analysis have been proposed, although

most of them in somewhat ad hoc fashion. So far, image analysis

reports in the literature are mainly dedicated to addressing the

detection of brain activation. Such approaches (‘‘brain mapping’’),

though very useful, are unable to address the more fundamental

principles that characterize brain dynamics by probing the connec-

tivity information obtainable from the BOLD signal.

Inferring the dynamics of interaction between different neural

structures is a crucial step toward understanding neural organi-

zation (Sameshima and Baccala, 1999; Friston, 2002). At

conceptual level, there is active interest in the formulation of

connectivity analysis. Friston has introduced the concept of

dynamic causal models (DCM, Friston, 1995; Friston et al.,

2003), based on nonlinear input-state-output systems, and a

bilinear approximation to dynamic interactions. However, the

DCM results rely on the prior connectivity specifications and also

on stationarity conditions. A potentially promising approach to

addressing some of these issues is the Granger causality concept

(Granger, 1969; Sameshima and Baccala, 1999; Baccala and

Sameshima, 2001; Roebroeck et al., 2005) which is borrowed

from econometrics and based on the notion of the predictability

of one signal by another, subject to the time constraint that the

effect cannot precede the cause. It is specially suited to study

partially ordered linear dependencies in multivariate contexts

without assuming any prior connectivity structure. Recently,

significant developments have occurred in the analysis of cerebral

connectivity. Buchel and Friston (1997) introduced covariance

structural equation modeling in fMRI applications. Subsequently,

Goebel et al. (2003) and Roebroeck et al. (2005) have proposed

the use of vector autoregressive models and shown their utility in

the analysis of fMRI experiments. Nevertheless, Granger causa-

lity alone is not sufficient to infer effective causal relations, as it

is based only on predictive power. Recent developments in
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graphical models have worked towards the identification of

effective causal links. Eichler (2005) suggested a graphical

representation of multivariate data that allows the inference of

effective connectivity, even in the presence of latent variables.

In its original form, Granger causality was defined for linear

stationary multichannel signals but, as with most biological signals,

there is no unique model for fMRI data and no strong theoretical or

experimental basis for the assumptions of stationarity of processes.

It is widely recognized that incorrect use of these assumptions can

lead to incorrect inferences.

Here, we propose a new method: the wavelet dynamic vector

autoregressive (DVAR) process, which can be seen as a

generalization of vector autoregressive model (VAR). This

approach does not require assumptions about the direction of

influence. The DVAR model is a multivariate version of the one

proposed by Chang and Morettin (2005) and Dahlhaus et al.

(1999). Its novel feature lies in directly modeling time-varying

coefficients through wavelet bases with a balance between

model complexity and interpretability. Wavelet analysis is an

area of intense research in statistical signal analysis because of

its wide applicability to model nonstationary signals and its deep

relationship to time-frequency representation of a signal.

Bullmore et al. (2003, 2004) have demonstrated the value of

wavelet analysis applied to the BOLD signal as a means of

retaining the colored-noise characteristics of the time series

during permutation testing of statistical significance, thus

highlighting the use of wavelet techniques in fMRI. Our aim

was to combine wavelet analysis and the Granger causality

concept given by VAR models to extend the methodology

available for the study of brain connectivity. Fitting time-varying

coefficients using a wavelet basis allowed us to model

nonstationary (locally stationary) and nonlinear (locally linear)

multichannel signals using Granger causal (VAR) approaches

and make inferences about temporal dynamics of neural

interactions. Thus, we can infer the connectivity structure of

brain regions in a time-varying way.

In this article, a review of Granger causality theory and

connectivity is presented, followed by the methodology under-

lying the new approach. Simulation results are presented and the

usefulness of the method is illustrated in an application involving

real fMRI data, in a simple sensorimotor experiment.

Granger causality and dynamic connectivity

Granger causality (Granger, 1969) is a concept that

originated in the area of econometrics, focusing on understand-

ing the relationships between two time series. Granger (1969)

defined the causality in terms of predictability, based on the

fact that the effect cannot come before the cause. Subsequently,

Goebel et al. (2003) applied Granger causality to the

description of interregional connectivity in fMRI data and to

detection of the direction of information flow between brain

regions.

Formally, consider a k-dimensional multivariate time series yt

yt ¼ y1t y2t; . . . ; ykt½ �V;

composed by k time series measured on time t. The Granger

causality identification is based on the improvement in predictions

of future values of the series yt, using the information of a

collection of p past values of the series (yt � 1, yt � 2, . . ., yt � p).

Hence, consider a k-dimensional vector autoregressive model

(VAR) of order p, defined by

yt ¼ vþ A1yt � 1 þ A2yt � 2 þ N þ Apyt � p þ ut;

where ut is an error vector of random variables with zero mean and

covariance matrix � given by

X
¼

r2
11 r21 > rk1

r12 r2
22 > rk2

r13 r23 > rk3

s s G s
r1k r2k > r2

kk

3
77775

2
66664 ;

and v and Ai (i = 1,2, . . ., p) are coefficient matrices given by

v ¼

v1
v2
s
vk

3
775

2
664 Ai ¼

a11i a21i > akl1
a12i a22i > ak2i
a13i a23i > ak3i
s s G s
a1ki a2ki > akki

3
77775

2
66664 :

The VAR model allows an easy way of identifying Granger

causality. An important result of the VAR model, is that the series

yjt noncauses ylt, if and only if, the coefficient ajli = 0 for any i.

In other words, the past values of yjt aid the prediction of future

values of ylt. Hence, Granger causalities can be identified simply

looking for the VAR representation, and the direction of causality

can be interpreted as the direction of information flow.

Furthermore, Granger causality relationship is not necessarily

reciprocal, for example, yjt may Granger cause the signal ylt,

without any implication that ylt Granger causes yjt.

This approach can be extended to the analysis of time series of

BOLD signals in functional magnetic resonance imaging data

(Goebel et al., 2003). Let k-dimensional time series represent the

regions of interest BOLD signal. Using the concept of Granger

causality, the VAR modeling makes possible the identification of

functional connectivity between brain areas by simply testing the

significance of the estimates of the components of the matrix At.

However, as the Granger causality is defined in terms of

predictability, the VAR modeling can indicate only functional

relationships. In other words, this approach points out the links

between signals, but does not, per se, indicate neurophysiologic

mechanisms (effective connectivity).

There are two widely used approaches to assigning significance

to the elements of matrices Ai. The first is based on a Wald test for

the statistical significance of the causality coefficients of a VAR

model (Lütkepohl, 1993). The second one is based on the

computation of F statistics by considering the ratio of residual

variances and is described in detail by Geweke (1982).

According to Roebroeck et al. (2005), there are two main

obstacles to the application of Granger causality mapping in fMRI.

The first obstacle is that the BOLD response is not a direct measure

of neural activity, and then, the connectivity relationships cannot be

identified due to hemodynamic blurring. Furthermore, the low

temporal resolution of fMRI may not provide enough information

for inferring connectivity. Despite these apparent problems, the

above authors were able to show by simulations that the Granger

causality can be useful for inferring brain functional connectivity.

However, VAR modeling is an adequate approach only in cases

of stationary time series, i.e., the autoregressive coefficients and

error matrix covariance are time-invariant. In fact, most connec-

tivity studies of fMRI data to date have used correlation analysis or

structural equations models, assuming stationarity conditions. In
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