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Both the architecture and the dynamics of the brain have characteristic

features at different spatial scales. However, the existence, nature and

function of dynamical interdependencies between such scales have not

been investigated. We studied the multiscale properties of functional

magnetic resonance imaging (fMRI) data acquired while human

subjects viewed a visual image. Traditional ‘‘region of interest’’ analysis

of this data set revealed evoked activity in primary and extrastriate

visual cortex. Wavelet transform in the spatial domain provides a

multiscale representation of this evoked brain activity. Studying the

correlation structure of this representation revealed strong and novel

interdependencies in these data within and between different spatial

scales. We found that such correlations are stronger than those evident

in the original data and comparable in magnitude to those obtained

after Gaussian smoothing. However, analysis of the data in the wavelet

domain revealed additional structure such as positive correlations,

strong anti-correlations and phase-lagged interdependencies. Statistical

significance of these effects was inferred through nonparametric

bootstrap techniques. We conclude that the spatial analysis of

functional neuroimaging data in the wavelet domain provides novel

information which may reflect complex spatiotemporal neuronal

activity and information encoding. It also affords a quantitative means

of testing hierarchical and multiscale models of cortical activity.
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Introduction

Neuroimaging technologies permit the neural correlates of

sensory processing, cognitive activity and motor behavior to be

topographically mapped in an increasingly precise manner.

However, the spatiotemporal dynamics of such neural responses

have remained elusive. That is, the ‘‘where’’ of neural processing is

being increasingly well documented, but, in contrast, the dynam-

ical structure of this activity is less understood. Improving the

characterization of task-related neuronal dynamics offers great

potential in better elucidating its representational and computa-

tional attributes. The aim of this paper is to present an exploratory

study of the dynamical structure of visually evoked cortical activity

in fMRI data through the use of the wavelet transform. The wavelet

transform permits the spatiotemporal properties of a data set to be

quantitatively mapped. We hypothesize that such a multiscale

representation will reveal novel features of the data that cannot be

captured by existing methods and which reflect computational

aspects of neural activity.

A common approach to the analysis of fMRI data is to apply

a Gaussian filter in the spatial domain as a preprocessing step.

This technique has proven remarkably successful in improving

the ‘‘signal-to-noise’’ ratio. However, implicit in such a step is

an assumption concerning the spatial properties of both the

signal and the noise components of the data. Moreover, because

of its broad spectral character, a Gaussian filter captures activity

across a broad range of spatial scales. There are several reasons

to consider that neural responses may have scale-specific

properties: (1) one of the over-arching organizational principles

of the brain’s architecture appears to be the segregation of

neuronal tissue into densely interconnected subsystems across a

hierarchy of spatial scales—from microcolumns (¨40 Am)

(Nunez, 1997) through cortical columns (0.3–3 mm) (Szenta-

gothai, 1983; Mountcastle, 1997; Shephard, 2004) to cortical sub-

areas, areas and hemispheres (Hilgetag et al., 2000; Stephan et al.,

2001; Passingham et al., 2002). (2) Information– theoretical

considerations argue that the complexity and robustness of

neuronal processes may be optimized when there exist strong

statistical interdependencies between subsets of a neuronal system

across many spatial (Tononi et al., 1994, 1999) and temporal

(Breakspear, 2002) scales. (3) Neocortical dynamics have been
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modeled as an ensemble of coupled nonlinear subsystems (Frank et

al., 2000) which exhibit a rich repertoire of multiscale effects in

both the spatial (Kaneko, 1994; Nakao et al., 2001) and temporal

(Fujimoto and Kaneko, 2003) domains. Where such effects are

temporally asymmetric, they have the character of a cascade,

permitting microscopic events to influence macroscopic outcomes.

Such mechanisms could facilitate information flow between

feature-specific neurons in primary sensory cortex and distributed

large-scale activity at higher levels of the cortical hierarchy

(Mesulam, 1998; Breakspear and Stam, 2005).

The putative existence of scale-specific effects is an empirical

question that requires special data analysis techniques. Employing

Gaussian filters with different center frequencies is not a suitable

approach as it is not possible to uniquely and/or fully represent

the data in such a way. Wavelet functions, on the other hand,

form a complete orthonormal basis set which is optimized for

precisely such a purpose. In this paper, a wavelet-based

correlation analysis is employed in an exploratory analysis of

fMRI data acquired while human subjects viewed a flickering

visual stimulus presented in a periodic block design. The choice

of this paradigm is informed by the objective to characterize

evoked neural activity as it enters the visual stream through

primary striate cortex—that is, we seek to understand the

multiscale representation of a very basic visual stimulus. The

visual cortical regions identified by applying traditional data

analysis methods to such an experimental paradigm have been

extensively documented, including the data analyzed in the

present study (Williams et al., 2000). The existence of more

complex structure within such data is therefore an intriguing

empirical question. The aim of this paper is to test the hypothesis

that a multiscale representation of the data will reveal the

existence and scale-characteristics of the evoked activity without

the a priori constraints imposed by pre-smoothing.

Methodology

Wavelet decomposition

A wavelet family Wj ,k(x) is a set of orthogonal basis functions

which permit a complete linear decomposition of a data set S(x),

S xð Þ ¼
X
j;k

Wj;k xð Þdj;k ð1Þ

where j indexes scale and k indexes position. The family of

wavelet functions Wj ,k (x) are generated through dilation (by j)

and translation (by k) of a single ‘‘mother’’ wavelet function

W(x) (Daubechies, 1992; Mallat, 1999). The ‘‘detail coefficients’’

dj ,k are calculated as the inner product of the corresponding

wavelet function and the data,

dj;k ¼ bWj;k xð Þ; S xð Þ�V ¼
Z
V

Wj;k xð ÞS xð Þdx ð2Þ

where 6 denotes the domain of S. The wavelet decomposition

yields a representation of the variance of the data across a

hierarchy of scales j = 1, 2, 3. . .. These have the dyadic structure

Nj = 2nNj + n where Nj denotes the number of elements at scale j.

For two-dimensional data, there are three sets of detail

coefficients at each scale, representing the variance in the

horizontal dh, vertical dv, and diagonal dd directions. These

have two translation factors k and l accounting for the two spatial

dimensions.

Principle methodology: wavelet-based correlation analysis

Given the time series of a spatially extended signal S(x, ti),

then a spatial wavelet transform of the data at each time point

yields the wavelet coefficient time series dj ,k(ti). A wavelet-based

correlation analysis (as proposed by Arneodo et al., 1998; Nakao

et al., 2001) simply examines the correlation and cross-correlation

functions defined on these spatial wavelet coefficients. These are

performed after the spatial location of the wavelet coefficients are

determined, taking into account the dyadic downsampling at

successive scales.

Two-region correlations

We first define the inter-scale correlation function for effects

occurring between two points. At each scale j and for each set of

coefficients, define the coarse-grained field bj(x, t) as

baj x;tð Þ ¼ daj;k;l tð Þ ð3Þ

where

k

2j
;
l

2j

��
V x V

k þ 1

2 j
;
l þ 1

2 j

�� ��
; ð4Þ

for k, l = 0, 1, . . ., 2 j � 1 and a indices either horizontal a = h,

vertical v or diagonal d coefficients. This captures the variance in

signal intensity at a certain position x, time t and scale j,

accounting for the downsampling mentioned above. The devia-

tions of these values from their mean values are given by

Ba
j x;tð Þ ¼ baj x;tð Þ �

bbaj x;tð Þ; I�T
T

; ð5Þ

where I is a constant valued function I(x, t) K 1 and T is the total

recording time. Define the wavelet cross-correlation matrix

between positions x1 and x2 as

Ca
j1; j2

x1; x2;Dtð Þ

¼ bBa
j1
x1; tð Þ;Ba

j2
x2; t þ Dtð Þ�Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bBa
j1
x1; tð Þ;Ba

j1
x1; tð Þ�TbBa

j2
x2; t þ Dtð Þ;Ba

j2
x2; t þ Dtð Þ�T

q
ð6Þ

This expresses the temporal correlation in the fluctuations of

image intensity across spatial scales j1 and j2 with time lag Dt. In

this exploratory analysis, we are interested in two aspects of this

multivariate function. Firstly, we calculate the time-zero correla-

tions Cj1,j2
a (x1,x2,0). These values give the ‘‘instantaneous’’ inter-

scale correlation between regions centered at x1 and x2. Secondly,

we wish to study the entire functions and how these reflect the

experimental paradigm. Each of these requires slightly different

statistical approaches, which are described in the Statistical

analysis section, below.

Single region multiscale correlations

By substituting x1 = x2 = x into Eq. (6), one obtains an

expression for cross-scale correlations with a region centered at

single location Cj1,j2
a (x,Dt). Note that, when x1 = x2 and Dt = 0, the

two terms on the numerator of Eq. (6) commute, and hence this

matrix is symmetric, Cj1,j2
a (x,0) = Cj2,j1

a (x,0). When Dt > 0, the

matrix is asymmetric to a degree that can be exploited to
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