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Neuronally plausible, generative or forward models are essential for

understanding how event-related fields (ERFs) and potentials (ERPs)

are generated. In this paper, we present a new approach to modeling

event-related responses measured with EEG or MEG. This approach

uses a biologically informed model to make inferences about the

underlying neuronal networks generating responses. The approach

can be regarded as a neurobiologically constrained source recon-

struction scheme, in which the parameters of the reconstruction have

an explicit neuronal interpretation. Specifically, these parameters

encode, among other things, the coupling among sources and how

that coupling depends upon stimulus attributes or experimental

context. The basic idea is to supplement conventional electromagnetic

forward models, of how sources are expressed in measurement space,

with a model of how source activity is generated by neuronal

dynamics. A single inversion of this extended forward model enables

inference about both the spatial deployment of sources and the

underlying neuronal architecture generating them. Critically, this

inference covers long-range connections among well-defined neuronal

subpopulations.

In a previous paper, we simulated ERPs using a hierarchical

neural-mass model that embodied bottom-up, top-down and lateral

connections among remote regions. In this paper, we describe a

Bayesian procedure to estimate the parameters of this model using

empirical data. We demonstrate this procedure by characterizing the

role of changes in cortico-cortical coupling, in the genesis of ERPs.

In the first experiment, ERPs recorded during the perception of

faces and houses were modeled as distinct cortical sources in the

ventral visual pathway. Category-selectivity, as indexed by the face-

selective N170, could be explained by category-specific differences in

forward connections from sensory to higher areas in the ventral

stream. We were able to quantify and make inferences about these

effects using conditional estimates of connectivity. This allowed us to

identify where, in the processing stream, category-selectivity

emerged.

In the second experiment, we used an auditory oddball paradigm

to show that the mismatch negativity can be explained by changes in

connectivity. Specifically, using Bayesian model selection, we assessed

changes in backward connections, above and beyond changes in

forward connections. In accord with theoretical predictions, there

was strong evidence for learning-related changes in both forward

and backward coupling. These examples show that category- or

context-specific coupling among cortical regions can be assessed

explicitly, within a mechanistic, biologically motivated inference

framework.
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Introduction

Event-related fields (ERFs) and potentials (ERPs) have been

used for decades as putative magneto- and electrophysiological

correlates of perceptual and cognitive operations. However, the

exact neurobiological mechanisms underlying their generation are

largely unknown. Previous studies have shown that ERP-like

responses can be reproduced by brief perturbations of model

cortical networks (David et al., 2005; Jansen and Rit, 1995; Jirsa,

2004; Rennie et al., 2002). The goal of this paper was to

demonstrate that biologically plausible dynamic causal models

(DCMs) can explain empirical ERP phenomena. In particular, we

show that changes in connectivity, among distinct cortical sources,

are sufficient to explain stimulus- or set-specific ERP differences.

Adopting explicit neuronal models, as an explanation of observed

data, may afford a better understanding of the processes underlying

event-related responses in magnetoencephalography (MEG) and

electroencephalography (EEG).

1053-8119/$ - see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2005.10.045

Abbreviations: DCM, dynamic causal Model(ing); EEG, electroen-

cephalography; ERF, event-related field; ERP, event-related potential;

MEG, magnetoencephalography; MMN, Mismatch negativity.
i Software note: The analyses presented in this paper will be available as

a toolbox, distributed with the next release [SPM5] of the SPM software

(http://www.fil.ion.ucl.ac.uk/spm).
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Functional vs. effective connectivity

The aim of dynamic causal modeling (Friston et al., 2003) is to

make inferences about the coupling among brain regions or sources

and how that coupling is influenced by experimental factors. DCM

uses the notion of effective connectivity, defined as the influence

one neuronal system exerts over another. DCM represents a

fundamental departure from existing approaches to connectivity

because it employs an explicit generative model of measured brain

responses that embraces their nonlinear causal architecture. The

alternative to causal modeling is to simply establish statistical

dependencies between activity in one brain region and another.

This is referred to as functional connectivity. Functional connec-

tivity is useful because it rests on an operational definition and

eschews any arguments about how dependencies are caused. Most

approaches in the EEG and MEG literature address functional

connectivity, with a focus on dependencies that are expressed at a

particular frequency of oscillations (i.e., coherence). See Schnitzler

and Gross (2005) for a nice review. Recent advances have looked

at nonlinear or generalized synchronization in the context of

chaotic oscillators (e.g., Rosenblum et al., 2002) and stimulus-

locked responses of coupled oscillators (see Tass, 2004). These

characterizations often refer to phase-synchronization as a useful

measure of nonlinear dependency. Another exciting development is

the reformulation of coherence in terms of autoregressive models.

A compelling example is reported in Brovelli et al. (2004) who

were able show that ‘‘synchronized beta oscillations bind multiple

sensorimotor areas into a large-scale network during motor

maintenance behavior and carry Granger causal influences from

primary somatosensory and inferior posterior parietal cortices to

motor cortex.’’ Similar developments have been seen in functional

neuroimaging with fMRI (e.g., Harrison et al., 2003; Roebroeck et

al., 2005).

These approaches generally entail a two-stage procedure.

First an electromagnetic forward model is inverted to estimate

the activity of sources in the brain. Then, a post hoc analysis is

used to establish statistical dependencies (i.e., functional

connectivity) using coherence, phase-synchronization, Granger

influences or related analyses such as (linear) directed transfer

functions and (nonlinear) generalized synchrony. DCM takes a

very different approach and uses a forward model that explicitly

includes long-range connections among neuronal subpopulations

underlying measured sources. A single Bayesian inversion

allows one to infer on parameters of the model (i.e., effective

connectivity) that mediate functional connectivity. This is like

performing a biological informed source reconstruction with the

added constraint that the activity in one source has to be caused

by activity in other, in a biologically plausible fashion. This

approach is much closer in sprit to the work of Robinson et al.

(2004) who show that ‘‘model-based electroencephalographic

(EEG) methods can quantify neurophysiologic parameters that

underlie EEG generation in ways that are complementary to and

consistent with standard physiologic techniques.’’ DCM also

speaks to the interest in neuronal modeling of ERPs in specific

systems. See for example Melcher and Kiang (1996), who

evaluate a detailed cellular model of brainstem auditory evoked

potentials (BAEP) and conclude ‘‘it should now be possible to

relate activity in specific cell populations to psychophysical

performance since the BAEP can be recorded in behaving

humans and animals.’’ See also Dau (2003). Although the

models presented in this paper are more generic than those

invoked to explain the BAEP, they share the same ambition of

understanding the mechanisms of response generation and move

away from phenomenological or descriptive quantitative EEG

measures.

Dynamic causal modeling

The central idea behind DCM is to treat the brain as a

deterministic nonlinear dynamical system that is subject to inputs,

and produces outputs. Effective connectivity is parameterized in

terms of coupling among unobserved brain states, i.e., neuronal

activity in different regions. Coupling is estimated by perturbing

the system and measuring the response. This is in contradistinction

to established methods for estimating effective connectivity from

neurophysiological time series, which include structural equation

modeling and models based on multivariate autoregressive

processes (Harrison et al., 2003; Buchel and Friston, 1997;

Mcintosh and Gonzalez-Lima, 1994). In these models, there is

no designed perturbation and the inputs are treated as unknown and

stochastic. Although the principal aim of DCM is to explain

responses in terms of context-dependent coupling, it can also be

viewed as a biologically informed inverse solution to the source

reconstruction problem. This is because estimating the parameters

of a DCM rests on estimating the hidden states of the modeled

system. In ERP studies, these states correspond to the activity of

the sources that comprise the model. In addition to biophysical and

coupling parameters, the DCM parameters cover the spatial

expression of sources at the sensor level. This means that inverting

the DCM entails a simultaneous reconstruction of the source

configuration and their dynamics.

Implicit in the use of neural-mass models is the assumption that

the data can be explained by random fluctuations around

population dynamics that are approximated with a point mass

(i.e., the mean or expected state of a population). This is usually

interpreted in relation to the dynamics of an ensemble of neurons

that constitute sources of signal. However, in the context of

modeling ERPs and ERFs, there is also an ensemble of trials that

are averaged to form the data. The mean-field-like assumptions that

motivate neural mass models can be extended to cover ensembles

of trials. This sidesteps questions about the trial-to-trial genesis of

ERPs. However, we have previously addressed these questions

using the same neural-mass model used in this paper (David et al.,

2005), by dissociating ‘‘the components of event-related potentials

(ERPs) or event-related fields (ERFs) that can be explained by a

linear superposition of trial-specific responses and those engen-

dered nonlinearly (e.g., by phase-resetting).’’ See David et al.

(2005) for further details.

Because DCMs are not restricted to linear or instantaneous

systems, they generally depend on a large number of free

parameters. However, because it is biologically grounded, parameter

estimation is constrained. A natural way to embody these constraints

is within a Bayesian framework. Consequently, DCMs are estimated

using Bayesian inversion and inferences about particular connec-

tions are made using their posterior or conditional density. DCM has

been previously validated with functional magnetic resonance

imaging (fMRI) time series (Friston et al., 2003; Riera et al.,

2004). fMRI responses depend on hemodynamic processes that

effectively low-pass filter neuronal dynamics. However, with ERPs,

this is not the case and there is sufficient information, in the temporal

structure of evoked responses, to enable precise conditional

identification of quite complicated DCMs. In this study, we use a
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