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Dynamical causal modeling (DCM) of evoked responses is a new

approach to making inferences about connectivity changes in hierar-

chical networks measured with electro- and magnetoencephalography

(EEG and MEG). In a previous paper, we illustrated this concept using

a lead field that was specified with infinite prior precision. With this

prior, the spatial expression of each source area, in the sensors, is fixed.

In this paper, we show that using lead field parameters with finite

precision enables the data to inform the network’s spatial configuration

and its expression at the sensors. This means that lead field and

coupling parameters can be estimated simultaneously. Alternatively,

one can also view DCM for evoked responses as a source reconstruction

approach with temporal, physiologically informed constraints. We will

illustrate this idea using, for each area, a 4-shell equivalent current

dipole (ECD) model with three location and three orientation

parameters. Using synthetic and real data, we show that this approach

furnishes accurate and robust conditional estimates of coupling among

sources and their orientations.
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Introduction

In David et al. (2006), we described dynamic causal modeling

(DCM) for event-related fields (ERFs) and potentials (ERPs). This

new approach is grounded on a neuronally plausible, generative

model that can be used to estimate and make inferences about

category- or context-specific coupling among cortical regions.

Context-specific coupling changes as a function of condition (i.e.,

experimental context such as ‘‘new’’ vs. ‘‘old’’ in memory

paradigms) or stimulus-bound attributes (i.e., ‘‘house’’ vs. ‘‘face’’).

These changes can reconfigure neuronal interactions and produce

different evoked responses for each category or context. The

coupling parameters embody bottom-up, top-down, and lateral

connections among remote cortical regions. Parameters are

estimated with a Bayesian procedure using empirical data (ERPs/

ERFs). With Bayesian model selection, one can use model

evidences to compare competing models and identify the model

that best explains the data.

In David et al. (2006), we constructed the spatial forward model

using distributed dipole modeling on the grey matter surface. This

procedure has the advantage of using the precise anatomical

structure of the head. The subject’s anatomy was derived from the

high-resolution structural magnetic resonance imaging (sMRI).

Critically, each area’s lead field was predetermined so that each

area had a fixed spatial expression in the sensors. Although this

approach provides spatially precise expressions in the sensors, the

true spatial configuration of an area may be different from our

model and lead to biased conditional estimates of other [e.g.,

coupling] parameters. For example, the spatial model can be wrong

because its parameters like location, orientation, or extent are

specified inaccurately.

Alternatively, each lead field or its underlying spatial param-

eters can be regarded as a parameter of the model. In a Bayesian

context, the above procedure is equivalent to using zero prior

variance (i.e., infinite precision which expresses our belief that the

specified lead field mediated the sensor data). If this belief is not

supported by the data, the optimization algorithm will, at worst,

fail to provide a good solution and compensate for the mis-

specified spatial model by biasing conditional estimates of other

parameters like coupling. A way to avoid this is to decrease our

strong belief in a specific lead field and use finite precision priors

on the lead field parameters. There are several ways to

parameterize the lead field. Although we could employ a

surface-based forward model, we use equivalent current dipoles

(ECDs). This has distinct advantages over other models. First,

ECDs’ spatial expression is analytic, i.e., the forward model

computation is fast (Mosher et al., 1999). Secondly, the model is

based on electrode positions only and does not need information

from a structural MRI. Thirdly, many authors reported ECD

location and orientation for specific ERP/ERF experiments in the

peer-reviewed literature (e.g., Valeriani et al., 2001): Within our
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approach, these locations and orientations could be employed as

prior expectations on ECD parameters. Finally, ECDs are a natural

way to specify nodes in the probabilistic graphs that DCMs

represent.

One can also view DCM for evoked responses as a source

reconstruction approach with temporal, physiologically informed

constraints imposed by our assumption that a hierarchical network

of discrete areas generated the data. The reconstructed source

activities over time fall out naturally as the system’s states.

Typically, most current source reconstruction approaches for EEG/

MEG data are based exclusively on constraints given by the spatial

forward model (Darvas et al., 2004). However, recently models

have been proposed which use (spatio-) temporal constraints to

invert the model (Darvas et al., 2001; Galka et al., 2004). These

spatiotemporal approaches are closer to DCM but use generic

constraints derived from temporal smoothness considerations and

autoregressive modeling.

This paper is structured as follows. In the Theory section, we

will describe briefly the temporal generative model for ERP/ERFs

(for a detailed description, see David et al., 2005). This is followed

by a description of the spatial forward model, its parameterization

and typical prior distributions we adopt for ERP data. In the

Results section, we illustrate the operational details of the

procedures on two ERP datasets. In the first ERP experiment, we

repeat the analysis of an auditory oddball dataset (David et al.,

2006) to show that the mismatch negativity can be explained by

changes in connectivity to and from the primary auditory cortex.

This analysis shows that biologically meaningful results can be

obtained in terms of the parameters governing the neuronal

architectures generating ERPs. In the second experiment, we

establish face validity in terms of the spatial parameters; we

analyze sensory-evoked potentials (SEPs) elicited by unilateral

median nerve stimulation and measured with EEG. With this

model, we can explain the observed SEP to 200 ms. We find strong

connectivity among areas during the course of the SEP. The

estimated orientations of these sources conform almost exactly to

classical estimates in the literature. Furthermore, we observe short

transmission delays among sources within the contralateral

hemisphere (¨6 ms) but long delays (¨50 ms) between

homologous sources in both hemispheres. Finally, using synthetic

data, we show that finite precision priors on lead field parameters

result in models with greater evidence and more accurate and

robust conditional estimates, in relation to models with infinitely

precise priors.

Theory

Intuitively, the DCM scheme regards an experiment as a

designed perturbation of neuronal dynamics that are promulgated

and distributed throughout a system of coupled anatomical sources

to produce region-specific responses. This system is modeled using

a dynamic input–state–output system with multiple inputs and

outputs. Responses are evoked by deterministic inputs that

correspond to experimental manipulations (i.e., presentation of

stimuli). Experimental factors (i.e., stimulus attributes or context)

can also change the parameters or causal architecture of the system

producing these responses. The state variables cover both the

neuronal activities and other neurophysiological or biophysical

variables needed to form the outputs. Outputs are those compo-

nents of neuronal responses that can be detected by MEG/EEG

sensors. In our model, these components are depolarizations of a

Fneural mass’ of pyramidal cells.

DCM starts with a reasonably realistic neuronal model of

interacting cortical regions. This model is then supplemented with

a spatial forward model of how neuronal activity is transformed

into measured responses, here, MEG/EEG scalp-averaged

responses. This enables the parameters of the neuronal model

(i.e., effective connectivity) to be estimated from observed data.

For MEG/EEG data, this spatial model is a forward model of

electromagnetic measurements that accounts for volume conduc-

tion effects (Mosher et al., 1999).

Hierarchical MEG/EEG neural mass model

We have developed a hierarchical cortical model to study the

influence of forward, backward, and lateral connections on ERFs/

ERPs (David et al., 2004). This model is used here as a DCM

and embodies directed extrinsic connections among a number of

sources, each based on the Jansen and Rit (1995) model, using

the connectivity rules described in Felleman and Van Essen

(1991). These rules, which rest on a tri-partitioning of the cortical

sheet into supra-, infra-granular layers and granular layer 4, have

been derived from experimental studies of monkey visual cortex.

Under these simplifying assumptions, directed connections can be

classified as (i) bottom-up or forward connections that originate

in agranular layers and terminate in layer 4; (ii) top-down or

backward connections that connect agranular layers; (iii) lateral

connections that originate in agranular layers and target all layers.

These long-range or extrinsic cortico-cortical connections are

excitatory and comprise the axonal processes of pyramidal cells.

For simplicity, we do not consider thalamic connections but

model thalamic output as a function operating on the input (see

below).

The Jansen and Rit (1995) model emulates the MEG/EEG

activity of a cortical source using three neuronal subpopulations. A

population of excitatory pyramidal (output) cells receives inputs

from inhibitory and excitatory populations of interneurons, via

intrinsic connections (intrinsic connections are confined to the

cortical sheet). Within this model, excitatory interneurons can be

regarded as spiny stellate cells found predominantly in layer 4 and

in receipt of forward connections. Excitatory pyramidal cells and

inhibitory interneurons occupy agranular layers and receive

backward and lateral inputs. Using these connection rules, it is

straightforward to construct any hierarchical cortico-cortical

network model of cortical sources.

The ensuing DCM is specified in terms of its state equations

and an observer or output equation

ẋx ¼ f x; u; hð Þ

h ¼ g x; hð Þ ð1Þ

where x are the neuronal states of cortical areas, u are exogenous

inputs, and h is the output of the system. h are quantities that

parameterize the state and observer equations (see also below

under FPrior assumptions’). The state equations are ordinary

second-order differential equations and are derived from the

behavior of the three neuronal subpopulations which operate as

linear damped oscillators. The integration of the differential

equations pertaining to each subpopulation can be expressed as a

convolution (David and Friston, 2003). This convolution trans-
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