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Minimum L1-norm solutions have been used by many investigators to

analyze MEG responses because they provide high spatial resolution

images. However, conventional minimum L1-norm approaches suffer

from instability in spatial construction, and poor smoothness of the

reconstructed source time-courses. Activity commonly ‘‘jumps’’ from

one grid point to (usually) the neighboring grid points. Equivalently, the

time-course of one specific grid point can show substantial ‘‘spiky-

looking’’ discontinuity. In the present study, we present a new vector-

based spatial– temporal analysis using a L1-minimum-norm (VESTAL).

This approach is based on a principle of MEG physics: the magnetic

waveforms in sensor-space are linear functions of the source time-

courses in the imaging-space. Our computer simulations showed that

VESTAL provides good reconstruction of the source amplitude and

orientation, with high stability and resolution in both the spatial and

temporal domains. ‘‘Spiky-looking’’ discontinuity was not observed in

the source time-courses. Importantly, the simulations also showed that

VESTAL can resolve sources that are 100% correlated. We then

examined the performance of VESTAL in the analysis of human

median-nerve MEG responses. The results demonstrated that this

method easily distinguishes sources very spatially close to each other,

including individual primary somatosensory areas (BA 1, 2, 3b),

primary motor area (BA 4), and other regions in the somatosensory

system (e.g., BA 5, 7, SII, SMA, and temporal–parietal junction) with

high temporal stability and resolution. VESTAL’s potential for obtaining

information on source extent was also examined.
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Introduction

MEG is a functional imaging technique that detects neuronal

activity with millisecond temporal resolution. However, many

different source configurations can generate identical magnetic

field distribution at the MEG sensor array. In order to unambig-

uously localize the sources that generate the MEG signal, specific

assumptions must be made about the nature of the neuronal

sources. These are termed ‘‘source models.’’ A widely accepted

source-modeling technique for MEG involves calculating a set of

equivalent current dipoles (ECDs), assuming that the underlying

neuronal sources are focal. This dipole fitting procedure is non-

linear and over-determined since the number of unknown dipole

parameters is much less than the number of MEG measurements.

Automated multiple-dipole model algorithms such as multiple

signal classification (MUSIC) (Mosher et al., 1992; Mosher and

Leahy, 1998; Mosher et al., 1999a) and multistart spatial and

temporal (MSST) multiple-dipole modeling (Huang et al., 1998;

Aine et al., 2000; Huang et al., 2000; Shih et al., 2000; Stephen

et al., 2002; Hanlon et al., 2003; Stephen et al., 2003; Huang et al.,

2004a; Huang et al., 2004b) have been studied and applied to the

analysis of human MEG responses. However, the ability of dipole

models to adequately characterize neuronal responses is limited

due to (1) difficulties in localizing extended sources with ECDs;

(2) problems in accurately estimating the number of dipoles in

advance; and (3) the sensitivity of dipole time-courses to errors in

dipole location, particularly in depth.

Other methods of modeling MEG responses include lead-field-

based imaging approaches. Unlike multiple-dipole modeling, lead-

field approaches divide the source space into a grid containing a

large number of dipoles, and the inverse problem is to obtain the

dipole moments for the grid nodes (Hamalainen and Ilmoniemi,

1994). Here the inverse solution is a highly under-determined since

the number of unknown dipole moments is much greater than the
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number of MEG sensors. Consequently, a large number of solutions

can fit the data equally well. To handle this ambiguity, additional

constraints are needed to reduce the non-uniqueness of the solution.

The main advantage of lead-field approaches is that the number of

sources to model does not need to be specified in advance. The

minimum L2-norm inverse is a lead-field-based inverse solution that

minimizes the total power (L2-norm) of the dipole moment

(Hamalainen and Ilmoniemi, 1994). Such a solution can be easily

obtained using a direct linear inverse operator (pseudo inverse

calculation with regularization) of the lead fields. Dale et al. (2000)

developed an anatomically constrained minimum L2-norm solution

using noise covariance normalization to obtain statistical signifi-

cance of MEG responses. Strengths of this solution included low

computational cost and smooth source time-courses, making

statistical comparison across different conditions quite simple. This

anatomically constrained minimum L2-norm solution has been used

in many MEG applications (Dale et al., 2000; Dale and Halgren,

2001; Marinkovic et al., 2003). However, the spatial resolution of

the minimum L2-norm solution is relatively low and tends to

provide distributed reconstructions even if the true generators are

focal. Cross-talk between source time-courses of nearby grid points

can also be relatively high.

Independent component analysis (ICA) is another signal

processing tool that can separate different signals, which are

statistically independent in time. ICA has been used to successfully

identify and remove artifacts (e.g., eye blink, eye movement,

muscle artifact, cardiac artifact, etc.) from contaminated EEG and

MEG data (Vigario, 1997; Ikeda and Toyama, 2000; Jung et al.,

2000a; Jung et al., 2000b). ICA has also been used to separate

different brain sources (Makeig et al., 1997; Vigario and Oja, 2000;

Vigario et al., 2000; Barros et al., 2000; Jung et al., 2001).

However, it has been difficult to directly examine two major

assumptions underlying ICA: that source time-courses of brain

activation are (1) statistically independent, and (2) non-Gaussian.

Statistical independence implies uncorrelated source time-courses;

ICA has difficulties of resolving highly correlated brain sources.

To address these limitations, the present study examined the

efficacy of a novel minimum L1-norm solution in analyzing MEG

responses. The minimum L1-norm solution selects the source

configuration that minimizes the absolute value of the source

strength, and can handle highly correlated sources, since additional

assumptions about their temporal dynamics are not needed. Like the

minimum L2-norm, the minimum L1-norm method does not need

information about the number of sources as a prerequisite. Unlike

minimum L2-norm solutions, the minimum L1-norm solution can

also provide focal high-resolution images for focal generators. The

minimum L1-norm solution is a non-linear minimization approach

that can be effectively implemented by linear programming (LP)

(Matsuura and Okabe, 1995; Matsuura and Okabe, 1997; Uutela et

al., 1999). Although LP is not as fast as the direct pseudo-inverse

used by the minimum L2-norm solution, many LP algorithms can

efficiently handle problems with thousands to millions of variables.

Deviating from the LP implementation of minimum L1-norm

approaches, Phillips et al. (1997) suggested a lead-field-based

inverse method for MEG using a combination of L1-norm and

neighborhood clustering function. However, their cost function

needed to be minimized by a Markov random field (Geman and

Geman, 1984), which results in a high computational cost,

particularly when the number of dipoles on the grid is large.

Although minimum L1-norm methods, particularly the magnetic

current estimation (MCE) L1-norm solution (Uutela et al., 1999),

have been used in manyMEG applications (Vanni and Uutela, 2000;

Tesche, 2000; Stenbacka et al., 2002; Pulvermuller et al., 2003;

Osipova et al., 2005; Auranen et al., 2005; Liljestrom et al., 2005),

these conventional approaches have some limitations. The first is

that the dipole orientation at each grid point must be known before

applying L1-norm methods (Uutela et al., 1999); or the dipole

orientation must be iteratively determined (Matsuura and Okabe,

1995, 1999). The latter approach can significantly slow down the

computation, without appreciably improving the results (Uutela

et al., 1999). In the former case, the dipole orientation on each grid

point is chosen based on the orientation derived from the minimum

L2-norm approach. However, when MEG data contain multiple

generators, the L2-norm reconstructed dipole orientation may

deviate from the true orientation (see Results for examples), which

can then cause the minimum L1-norm analysis to misfit the data.

The most serious limitations of conventional minimum L1-norm

approaches are their instability in spatial location and poor

smoothness in reconstructed source time-courses. For instance,

one often sees activity ‘‘jumping’’ from one grid point to (usually)

neighboring grid points. Equivalently, the time-course of one

specific grid point can show substantial ‘‘spiky-looking’’ disconti-

nuities. This problem is also encountered in other focal localization

methods using lead-field approaches (e.g., FOCUSS Gorodnitsky

et al., 1995). Although averaging across many time points reduces

the discontinuity in source time-courses, this results in a loss in

temporal resolution (Uutela et al., 1999; Vanni and Uutela, 2000;

Tesche, 2000; Stenbacka et al., 2002; Pulvermuller et al., 2003;

Osipova et al., 2005; Auranen et al., 2005; Liljestrom et al., 2005).

In the present study, we introduce a novel vector-based spatial–

temporal analysis using a L1-minimum-norm (VESTAL) solution.

This approach is to ensure the linear relationship between MEG

waveforms in sensors and the time-courses of the underlying

neuronal sources. In the VESTAL approach, the temporal

information in the data was used to enhance the stability of the

reconstructed vector-based L1-minimum norm solution. Since this

approach makes no additional assumptions about the temporal

dynamics of the sources, it can also handle sources that are 100%

correlated. VESTAL also effectively obtains source strength and

dipole orientation without iteration or choosing a pre-fixed dipole

orientation for each grid node. VESTAL was tested in computer

simulations, and using data from human MEG responses. The

results show that VESTAL provides high spatial stability and

continuous temporal dynamics, without compromising spatial or

temporal resolution.

Material and methods

Minimum L1-norm solution (general approach)

As in all lead-field-based MEG and EEG inverse approaches,

we first divide the source space (the brain volume or just the

cortex) into a grid of a large number of dipole locations. The m � s

sensor waveform matrix B = [b(t1), b(t2), . . . , b(ts)] contains MEG

data where m is the number of MEG sensors and s is the number of

time points, b(ti) is an m � 1 vector of the MEG measurements at

given time point. For each column of B, we have:

b ¼ Gqþ noise ð1Þ

where G is the m � n (lead-field) gain matrix, q is the n � 1 dipole

moment vector for given time point, and n is the number of
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