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An accurate estimation of the hemodynamic response function (HRF)

in functional magnetic resonance imaging (fMRI) is crucial for a

precise spatial and temporal estimate of the underlying neuronal

processes. Recent works have proposed non-parametric estimation of

the HRF under the hypotheses of linearity and stationarity in time.

Biological literature suggests, however, that response magnitude may

vary with attention or ongoing activity. We therefore test a more

flexible model that allows for the variation of the magnitude of the

HRF with time in a maximum likelihood framework. Under this model,

the magnitude of the HRF evoked by a single event may vary across

occurrences of the same type of event. This model is tested against a

simpler model with a fixed magnitude using information theory. We

develop a standard EM algorithm to identify the event magnitudes and

the HRF. We test this hypothesis on a series of 32 regions (4 ROIS on

eight subjects) of interest and find that the more flexible model is better

than the usual model in most cases. The important implications for the

analysis of fMRI time series for event-related neuroimaging experi-

ments are discussed.
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Introduction

The mechanisms coupling neuronal activity and the BOLD

response (blood oxygen level dependent) (Ogawa et al., 1990)

observed with fMRI are still poorly understood. The variations of

the BOLD contrast, measured with fMRI, are often characterized

by the response to a unitary and very short stimulus, i.e., the

hemodynamic response function (HRF). Precise estimation of the

HRF is important to help better quantify neuronal activity in

BOLD data. While the analysis of those data is still an active field

of research, most standard techniques rely on a pre-specified model

of the hemodynamic impulse response function.

Recently, some progresses have been made in the non

parametric estimation of the hemodynamic response function

(HRF). These advances are implemented through the use of

Bayesian models that allow the inclusion of temporal information

taken from the physiological knowledge of the brain response,

such as the regularity of the response (Goutte et al., 2000; Ciuciu et

al., 2003; Marrelec et al., 2001). In particular, in Ciuciu et al.

(2003), a general solution is presented that takes into account the

specificities of actual fMRI data sets. In this work, a different

function (HRF) is estimated depending on the event type (i.e., the

kind of stimulus presented or the sort of task to be performed by

the subject). Recent works have also proposed more accurate noise

models (Woolrich et al., 2004, 2005), and others have included

physiological information in more biologically plausible models

(Buxton and Frank, 1997; Friston et al., 2000; Riera et al., 2004;

Aubert and Costalat, 2002). Lately, Makni and colleagues

introduced the idea that the HRF could be estimated with a

constant shape but with varying magnitude across voxels in a given

region of interest (Makni et al., 2004).

However, the estimations proposed so far have assumed a

crucial hypothesis.

To the exception of two recent studies, previous works have

assumed that each event of a given type (in other words each

occurrence of a given experimental condition) evoked a BOLD

response constant in shape and in magnitude. Some models have

introduced an important flexibility across events, but stationarity in

time is most generally assumed. Recently, it was suggested that this

might not always be the case (Duann et al., 2002). In this latter

work, the authors show convincingly that the evoked hemody-

namic response may vary with time using independent components

analysis over the entire dataset but do not explicitly test this model

for a given region of interest. Previous works using electrophys-

iology or optical imaging also suggest that responses to trials may

depend on ongoing activity (Arieli et al., 1996) or top down effects

such as attention. One notable exception is the work of Lu et al.

(2005), which propose a general framework to account for

variation between events of the HRF shape and magnitude, and

use an F test to show that the more complex model is generally
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more appropriate. However, the authors use a complex optimiza-

tion procedure submitted to hard constraints in which the validity

of the model selection through an F test has yet to be validated.

Their approach is also limited to events synchronized with the TR

and single-condition experiments. Lastly, the hemodynamic

response is also constrained to be close to a standard model, while

there is evidence in former works that the shape of the response

may be variable across subjects, brain regions, or even experiments

(Aguirre et al., 1998). It is worth noting that when the variability of

the response can be linked to some known parameter, standard

methods can be applied (see Buchel et al., 1998).

In this paper, we propose a more direct model to test for this

hypothesis with an approach that can be used in any event-related

fMRI experiment and present the results on several brain areas. For

a given type of stimulus, we propose that the different event

occurrences can induce responses of varying magnitude. A method

able to select the most likely model (between fixed and variable

event magnitude) is described. While a first version of this model

was presented in Donnet et al. (2004) and validated on simulated

data only, we propose here a more robust version of this model and

study whether it is likely to be useful in actual fMRI analysis by

testing its relevance on 32 regions of interest drawn on 8 subjects.

While the model presented here is clearly a simplification of the

underlying biology since it does not include physiological

modelling (for instance using the balloon model), it may still

provide useful information on the temporal behavior of the brain

response for a fixed stimulus or task. This model is more flexible

than what has been generally proposed so far since it does not

assume a specific shape for the hemodynamic response nor its

magnitude stationarity with time.

The rest of the paper is organized as follows. First, the model of

the data is presented with an emphasis on the underlying

hypotheses. Second, we describe the methodology for parameter

estimation, likelihood computation, and model selection. Third, we

present the fMRI dataset used to test the model and then illustrate

the results. Lastly, we discuss some consequences of our findings

for fMRI data analyses.

Method

The model

Modelling the observed series with one event type

We denote the observed fMRI time series extracted from a

given region of interest by y = ( y1, . . . , yn) V where yi = y(ti) is the

measurement at time ti, with ti = iTR, TR being the time of

repetition. n is the number of scans within the session. The

hemodynamic response function is denoted by h(t). Assuming a

convolution model, we have:

yi ¼
XM
m ¼ 1

x smð Þh ti � smð Þ þ
XQ
q ¼ 1

lqPq tið Þ þ ei; i ¼ 1 N n ð1Þ

where

& (x(sm))m = 1. . .M is the input time series, with sm = mDe. De

defines a finer grid than the one defined by TR because an event

can occur at any time, not necessarily at the time of data sampling.

Typically, TR is around 2–4 s, while the occurrence of an event

may be defined every 100 ms or less (a typical value is TR/16).

& The second sum represents a low-frequency drift. In fMRI

experiments, the BOLD data are contaminated by low-

frequency phenomena due to physiological artefacts, scanner

drifts, or subject movements. In general, the data are high-pass

filtered before estimating the HRF. In this work, we choose to

estimate simultaneously the HRF and the trend. For this, we

model the low frequencies by a family of orthonormal functions

(P1, . . . , PQ), such as one-dimensional discrete cosine trans-

form. The number Q of basis functions depends on the lowest

frequency fmin attributable to the drift term. It can be defined as

Q = [2nTRfmin] + 1. The quantities (lq)( q = 1. . .Q) represent the

unknown weighting coefficients of the basis functions and

have to be estimated.

& The sequence ( = ((1. . .(n) is taken as a Gaussian white noise

of variance r2. Although this is a simplifying assumption for

fMRI data, it has been shown in Marrelec et al. (2001) that, in a

Bayesian framework, the distribution of the error term does not

influence the estimation of the HRF significantly. Since the

same assumption is made for all models, it is unlikely that this

distribution will greatly change the model selection results. The

information of interest lies within the comparison of the

likelihood of those models. Moreover, a more flexible model

leads to a different noise estimation, which typically shows a

lesser degree of time correlation (results not shown).

As in previous works, for the response function h, we assume

that h(u) = 0 for u � 0. Furthermore, we truncate h, setting h(u) =

0 for u > LDe, where LDe is typically 20 or 25 s.

If events are occurring at instants s1, s2, . . .sJ, we have,

x sð Þ ¼ 0 if s =Z s1; s2; N sJf g;

x sj
� �

¼ aj 1 V j V J :

Thus, the model becomes:

yi ¼
XJ
j ¼ 1

ajh ti � sj
� �

þ
XQ
q ¼ 1

lqPq tið Þ þ ei ; i ¼ 1 . . . n ð2Þ

We define the matrices

H ¼ Hij

� �
1 V i V n;1 V j V J

; A ¼ Aimð Þ1 V i V n;1 V m V M and

P ¼ Piq

� �
1 V i V n;1 V q V Q

by

Hij ¼ h ti � sj
� �

; Aim ¼ x ti � smð Þ and Piq ¼ Pq tið Þ

and the vectors

a ¼ a1; N ;aJð ÞV; h ¼ h1; N ;hLð ÞV and l ¼ l1; N ;lQ
� �

V

where v V is the transposed of the vector v.

P, H, and A have as many lines as there are temporal

observations (n), H has as many columns as there are events

( J), A has as many columns as there are time locations on the fine

temporal grid, P has as many columns as there are functions in the

chosen basis (Q). Then, we obtain the following matrix form:

y ¼ Haþ Pl þ e ð3Þ

¼ Ahþ Pl þ e ð4Þ
This last formula is important because it states that the data can

be considered as either the sum of the fixed HRF response
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