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a b s t r a c t

Assessing the reliability of complex technological systems such as communication networks,
transportation grids, and bridge networks is a difficult task. From a mathematical point of view, the
problem of estimating network reliability belongs to the #P complexity class. As a consequence, no
analytical solution for solving this problem in a reasonable time is known to exist and one has to rely
on approximation techniques. In this paper we focus on a well-known sequential Monte Carlo algorithm
— Lomonosov’s turnip method. Despite the fact that this method was shown to be efficient under some
mild conditions, it is known to be inadequate for a stable estimation of the network reliability in a
rare-event setting. To overcome this obstacle, we suggest a quite general combination of sequential
Monte Carlo and multilevel splitting. The proposed method is shown to bring a significant variance
reduction as compared to the turnip algorithm, is easy to implement and parallelize, and has a proven
performance guarantee for certain network topologies.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays it is hard to underestimate the importance of net-
works in our life and, as a consequence, a natural question of their
reliability arises [1–5]. Many engineering applications, such as
computer and transportation networks, water distribution and
gas supply systems, can be modelled via a graph structure, whose
components (nodes and edges), are subject to failure. Such
networks are often used to model a delivery of some resource or
commodity, so one will be generally concerned with the reliability
of the entire system. Consequentially, we adopt the following
definition of the network reliability problem [6]. Let G ¼ GðV ; E;KÞ
be an undirected graph, where V and E are the vertex and edge sets,
respectively, andK#V is a set of ‘‘terminal” nodes. We assume that
the vertices never fail, but that the edges are subject to failure. In
particular, every e 2 E has a corresponding failure probability
0 6 qe 6 1. An edge can be in an up or down state with probabilities
pe ¼ 1� qe and qe, respectively. Under the above framework we
wish to assess the network unreliability, defined as the probability
that the terminal set K is disconnected [7].

The exact solution to the K-terminal network reliability prob-
lem is hard to obtain within reasonable computation time, since

this problem belongs to the #P complexity class [8,9]. This com-
plexity class, introduced by Valiant [10], consists of the set of
counting problems that are associated with a decision problem in
NP (non–deterministic polynomial time). For example, #SAT is
the problem of counting the number of feasible solutions to a sat-
isfiability formula (SAT).

For some #P-complete problems there are known efficient
approximations. For example, Karp and Luby [11] introduced a
fully polynomial randomized approximation scheme (FPRAS) for
counting the solutions of satisfiability formulas in disjunctive nor-
mal form (DNF). The DNF counting algorithm allows an efficient
solution to the K-terminal network reliability problem, provided
that the list of K-separating cuts is available [12]; however, the lat-
ter is generally expensive to obtain. For the all-terminal network
reliability case (K ¼ V), an FPRAS was developed by Karger [8].
However, to the best of our knowledge, there exists no FPRAS for
estimating the general K-terminal network reliability case. The
current state-of-the-art can deal only with specific graph topolo-
gies such as series–parallel and directed acyclic networks [13,14],
or with small-sized graphs. We refer to [7] for further details.

Due to the problem’s importance, various approximation
techniques were proposed [7,15–19]. For more recent advances
in cut based, matrix-based, and linear programming methods, we
refer to [20–23], respectively. In the stochastic simulation area,
see the works of Shafieezadeh and Ellingwood [15], the multilevel
splitting algorithms of Botev et al. [24,25], Walter [26], the similar
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subset simulation approach of Zuev et al. [27], and the sequential
Importance Sampling (SIS) method of L’Ecuyer et al. [28]. The latter
generates the link states in a sequential manner, while introducing
a smart sampling scheme that approximates a corresponding zero-
variance importance sampling distribution. In this paper we focus
on Lomonosov’s turnip (LT) algorithm [17]. This method is an
improvement of the Permutation Monte Carlo (PMC) scheme
which was shown to be efficient under some mild conditions. In
particular, it brings a significant variance reduction as compared
to LT, and has a proven performance guarantee for some network
topologies.

We give a brief introduction to PMC and LT in Section 2. Despite
the fact that PMC and LT are designed to deal with quite hard
network instances, it was shown in [24] that these methods can
be very inefficient in a rare-event setting. To overcome the rare-
event complication, Botev et al. [24] formulated the network
reliability problem as a static rare-event probability estimation
problem and employed the Generalized Splitting (GS) algorithm
[6, Chapter 14].

The multilevel splitting framework was first used by Kahn and
Harris [29] to estimate rare-event probabilities. The main idea is to
partition the state space in such a way that the problem becomes
one of estimating conditional probabilities that are not rare. The
GS algorithm of Botev and Kroese [30] generalizes this to a method
able to evaluate a wide range of rare-event estimation problems.
For a survey of the general methodology we refer to
[31–33, Chapter 4].

Inspired by the successful approach of Botev et al. [24], we put
the LT method into a sequential Monte Carlo (SMC) framework
combined with multilevel splitting [30,32,33]. In particular, we
propose to combine the very general splitting idea of Kahn and
Harris [29] with the LT procedure. Unlike Botev’s GS, we do not
reformulate the reliability problem, but rather equip the LT algo-
rithm with the corresponding splitting mechanism, thus exploiting
the strengths of both methods. The resulting algorithm introduces
a significant variance reduction as compared to the basic LT
method and has a proven performance guarantee for some net-
works. Namely, we prove that our method is an FPRAS for special
families of graphs. See Section 3 for details.

The rest the paper is organized as follows. In Section 2 we give a
brief introduction to the PMC and LT algorithms and show a simple
family of networks for which LT’s performance is inefficient. In Sec-
tion 3 we put LT into a quite general SMC framework combined
with multilevel splitting. We show that the resulting algorithm
can be used to deliver highly accurate estimators and provide an
explanation for its efficiency. In Section 4 we present various
numerical examples to demonstrate the advantage of the proposed
method. Finally, in Section 5 we summarize our findings and dis-
cuss possible directions for future research.

2. Permutation Monte Carlo

Below we describe the PMC algorithm of Michael Lomonosov,
also called the network evolution process. This method was
designed to estimate the reliability of networks with independent
components having different failure probabilities. For detailed
explanations, see [17] and [18, Chapter 9].

Our setting is as follows. Given a network G ¼ GðV ; E;KÞ where
V is the node set, E is the edge set and K#V is the terminal set. The
edges states are binary; that is, edge e can be in the up or down
state with probabilities pe and qe ¼ 1� pe, respectively. The
network UP state is defined as the presence of connectivity of all
terminal nodes.

The basic idea of PMC is to associate with each edge e 2 E an
exponentially distributed random ‘‘birth time” T ðeÞ with parame-

ter kðeÞ, such that PðT ðeÞ 6 sÞ ¼ 1� e�kðeÞs ¼ pe holds for all e 2 E
and for an arbitrary chosen time value s. Let us assume that all
the edges are in the down state at time zero. Then, an edge e is born
at time T ðeÞ; that is, at the time T ðeÞ it enters the up state and
stays there ‘‘forever”. The probability that e will be ‘‘alive” at time
s is P T ðeÞ 6 sð Þ ¼ pe. The value of s can be arbitrary, so for simplic-
ity we put s ¼ 1 and it follows that kðeÞ ¼ � lnqe. If we take a
‘‘snapshot” of the state of all edges at time instant s ¼ 1, we will
see the network in the state which is stochastically equivalent to
the static picture in which edge e is up or down with probability
pe or qe, respectively.

Suppose that jEj ¼ n and consider the ordering (permutation) of
the edges p ¼ ðe1; . . . ; enÞ, according to their birth times sorted in
increasing order. Since the birth times are exponentially dis-
tributed, it holds that

PðP ¼ pÞ ¼
Yn
t¼1

kðetÞ
KðEt�1Þ

; ð1Þ

where Et ¼ E n fe1; . . . ; etg for 1 6 t 6 n� 1, and KðEtÞ ¼
P

e2EtkðeÞ
[17,34].

The first index 1 6 aðpÞ 6 n of the edge permutation p for
which the sub-graph of G defined by GðV ; ðe1; . . . ; eaðpÞÞ;KÞ is in
the UP state, is called an anchor of p. That is, aðpÞ ¼
min t : G V ; ðe1; . . . ; etÞ;Kð Þ is UPf g. Let n1 þ � � � þ nt be the birth
time of edge et in p for 1 6 t 6 n. Then, given the edge permuta-
tion P ¼ p, the probability that the network is in the UP state is
given by

P
XaðpÞ
t¼1

nt 6 1 jP ¼ p

 !
¼ Conv16t6aðpÞ 1� e�KðEtÞ

� �
;

where Conv stands for exponential convolution. The network
DOWN and UP probabilities denoted by �r and r, respectively, can
be expressed as

�r ¼
X
p

PðP ¼ pÞ � P
XaðpÞ
t¼1

nt > 1 jP ¼ p

 !
; ð2Þ

and

r ¼
X
p

PðP ¼ pÞ � P
XaðpÞ
t¼1

nt 6 1 jP ¼ p

 !
;

respectively, where the summation is over all permutations p. Since
the network unreliability and reliability in (2) is expressed as an
expectation, it can be estimated without bias as the sample average
of conditional probabilities, Pðn1 þ n2 þ � � � þ naðPÞ > 1jPÞ over an

independent sample of trajectories fPð1Þ;Pð2Þ; . . . ;PðNÞg. This proce-
dure is summarized in Algorithm 2.1.

Algorithm 2.1 (PMC Algorithm For unreliability estimation). Given a
network G ¼ GðV ; E;KÞ, edge failure probabilities (qe; e 2 E), and
sample size N, execute the following steps.

1. (Initialization) Set S 0. For each edge e 2 E, set
kðeÞ  � lnðqeÞ and k 0.

2. (Permutation Generation) Set k kþ 1 and sample

PðkÞ ¼ eðkÞ1 ; . . . ; eðkÞn

� �
using (1).

3. (Find the Anchor) Calculate

a PðkÞ
� �

¼min t : G V ; eðkÞ1 ; . . . ; eðkÞt

� �
;K

� �
is UP

n o
:

4. (Calculation of Convolution) Set:

RðkÞ  1� Conv16t6a PðkÞð Þ 1� e�K EðkÞt

� �� 	
;
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