Structural Safety 62 (2016) 1-11

Contents lists available at ScienceDirect Structural

=
3

Structural Safety

V4
RAT,
i s
y 4

¥

journal homepage: www.elsevier.com/locate/strusafe

Surrogate-enhanced stochastic search algorithms to identify implicitly
defined functions for reliability analysis

@ CrossMark

V.S. Sundar, Michael D. Shields *

Department of Civil Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

ARTICLE INFO ABSTRACT

Article history:

Received 30 August 2015

Received in revised form 2 May 2016
Accepted 6 May 2016

Available online 20 May 2016

The paper proposes two adaptive stochastic search algorithms to locate and trace an implicitly defined
function with samples that are used to construct a surrogate model for reliability analysis. Both methods
begin by propagating a series of surrogate-informed stochastic processes toward the implicit perfor-
mance function. Having located the function, the first method conducts a “global” tracing of the function
while the second traces the function by propagating samples locally. A key feature of both proposed algo-
rithms is that the surrogate model evolves continuously with the sample selection and is used to inform

Key.wof ‘.15" the selection of new samples such that it converges rapidly to an accurate representation of the limit sur-
Reliabilit;

Responseysurface face. In the present implementation, an artificial neural network surrogate model is employed but the
Meta-model method can, in principle, be applied with any surrogate model form. Performance of the algorithms is

illustrated through problems with highly nonlinear limit state functions and high dimensional non-
Gaussian random variables.
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1. Introduction

With recent advancements in computational power, numerical
tools are now, more than ever, being widely applied to solve com-
plex problems in engineering and the sciences. However, the prob-
lem of evaluating reliability, or estimating probability of failure, for
complex structures and systems remains intractable for many
problems given the large computational expense associated with
model evaluations and the need to evaluate the model a very large
number of times. The advancement of variance reduction strate-
gies such as importance sampling [1,2], stratified sampling [3,4],
subset simulation [5], and line sampling [6] has made sample-
based approaches increasingly tractable but these methods often
still require an unacceptably large number of simulations or pos-
sess undesirably high coefficient of variation [7]. One way of
addressing the problem of computational expense is to develop
an explicit mathematical model that approximates the computer
code, is computationally efficient, and accurately reflects the most
important properties of the response. Broadly referred to as surro-
gate models, meta-models, or response surfaces, they need to be
tailor made to suit specific problems (see, for example, [8,9]) and
may then be used to estimate statistical properties of the desired
quantity. Over the past twenty years, there have been numerous
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studies proposing new methodologies to construct surrogate
models using principles of machine learning [10] (artificial neural
networks [11-13] and support vector machines [14-17]), improve-
ments to the existing response surface techniques (using, for
example, high-order polynomial approximations [18] or account-
ing for multiple failure domains [19]) and Gaussian process/Kriging
models [20,21]. A review of some available methods, their merits
and demerits can be found in [22].

A key feature of most recent surrogate model developments is
adaptivity in the sample point selection. For all surrogate model
forms, adaptive methods have been employed at some level to
identify “optimal” sample points for the construction of the model.
In this spirit, Guan and Melchers [23] have highlighted the sensi-
tivity of polynomial response surfaces to the selection of sample
points - illustrating the importance of their appropriate selection.
For conventional (first and second order) polynomial response sur-
faces, numerous adaptive sample design approaches have been
proposed beginning with Kim and Na [24] who proposed a sequen-
tial method using the gradient projection method to place points
close to the true limit surface. Following a similar approach, Zheng
and Das [25] adaptively add complexity (second order square and
interaction terms) to identify a suitable response surface approxi-
mation. Nguyen et al. [26] proposed a method that uses comple-
mentary experimental designs to adaptively select the support
points and fits the response surface using a weighted regression
where weights are determined based on the distance from the
limit surface and the sample point [27]. Steenackers et al. [28]
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integrated an adaptive response surface directly into an computa-
tion driven design optimization. In the context of support vector
machines, Richard et al. [16] utilize a rotated basis for the experi-
mental design that is constructed from gradients of the surrogate
model while Dai et al. [17] utilize an adaptive Markov Chain Monte
Carlo (MCMC) approach to draw samples from the target optimal
importance sampling density [29]. Meanwhile, for Kriging models
Echard et al. [30] utilize a learning function to select the optimal
point to add to the sample design based on considerations from
the current state of the Kriging surrogate. Recently, Balesdent
et al. [31] coupled a Kriging-based surrogate with adaptive
importance sampling to estimate failure probabilities.

The proposed approach belongs to this general family of
adaptive surrogate model designs. The basic idea is to utilize the
surrogate model adaptively to obtain samples that “trace” the
implicitly defined function. We employ a two-step strategy in
which the first step involves a surrogate-enhanced search of the
space to identify the failure domain(s). This search utilizes
“pseudo-Markov Chains” designed to propagate samples toward
the failure domain. To do so, a Markov Chain Monte Carlo-like
algorithm is applied wherein the conventional Metropolis—
Hastings acceptance/rejection criterion is replaced with a
surrogate-based criterion that accepts a sample if the surrogate
model shows the new sample decreases the performance function
and rejects the sample otherwise. The surrogate model is updated
after every step of the chain and the chains are propagated until
each crosses the limit surface.

In the next step, two methods - a global method and a local
method - are proposed to trace the limit surface. The global method
defines a band around the surrogate limit surface and performs ran-
dom draws from the known probability densities conditioned upon
existence within the band. From these conditional random samples,
the point is selected that maximizes a performance-adjusted dis-
tance from all other existing surrogate design points. The local
method utilizes a similar point selection methodology but on a
locally confined domain surrounding each individual surrogate
design point. Again, the surrogate model is updated after each design
point selection to gain increasing accuracy with the iterations. Both
methods are applied to a set of benchmark reliability problems pos-
sessing different features such as strong nonlinearity, multiple fail-
ure domains, non-Gaussianity, and moderately high dimension. The
methods are demonstrated to produce very accurate surrogate mod-
els in a small number of sample points. Given the heuristic nature of
these algorithms, some discussion of each methodology is provided
to highlight their relative strengths and weaknesses and address
practical considerations for their implementation.

As an additional consideration, there seems to be no general
strategy in the existing literature for determining the appropriate
type of surrogate model to be employed for a given problem. In
the present implementation and example problems, an artificial
neural network surrogate model is employed. However, to the
extent possible, the methodology is presented such that it is inde-
pendent of the surrogate model form as the method is (at least in
principle) applicable to any general form of surrogate.

2. Surrogate models for reliability analysis in structural
mechanics

Consider that all the uncertainties associated with a structural
system are quantified in terms of an n—dimensional random
variable X with joint-probability density function (pdf) px(x).
When random fields or random process models are used, it is
assumed that these can be adequately represented in terms of ran-
dom variables through a suitable discretization scheme [32,33].
The probability of failure with respect to a performance function,
g(X), is computed through the n-fold integral:

Py = Plg(X) < 0] = / Px(X)dx (1)

8(x)<0

Here g(X) = 0 is called the limit surface, and g(X) < O denotes the
unsatisfactory performance of the structural system. Solving Eq.
(1) is often not straightforward due to (i) the correlated non-
Gaussian nature of the random variable X, (ii) partial specification
of px(x), (iii) the non-linear nature of the performance function,
g(X), and (iv) difficulty in evaluating g(X), or unavailability of
g(X) in explicit form. Typically Eq. (1) is solved by converting the
correlated non-Gaussian random variables into uncorrelated stan-
dard normal random variables and posing the reliability problem
in the standard normal space [34]. Given the often complex (non-
linear, discontinuous, etc.) and implicit nature of g(X), approximate
or simulation-based approaches are typically employed to solve Eq.
(1) [29,35]. In such cases, the classical Monte Carlo estimator for Pr
is given by:

N
Pr = ligx) < 0] @)
i=1

where I[e] is the indicator function.

Considering the large computational expense associated with
the estimate in Eq. (2), it is often desirable to construct a surrogate
model for the performance function g(X). A surrogate model is an
explicit mathematical expression that is computationally inexpen-
sive to evaluate and is designed to approximate the implicitly
defined function. This surrogate model is denoted g(X) and is con-
sidered sufficiently accurate if

lg(x) —&(X)| <€, VXES 3)

where S denotes a subset of the sample space over which the
response is deemed to be important, and € is a suitable accuracy
threshold. Having established the surrogate model, the Monte Carlo
estimator for Pr can be obtained using the approximate function as

N
Pr = > IEx) < 0] (4)
i=1

For problems concerning determination of reliability as considered
here, the strict constraint given in Eq. (3) need not necessarily be
enforced. A sufficient condition for acceptance of the surrogate
model can be established such that g(x) <0< g(x) <0, and
g(X) >0 <= g(x) >0, VX;X ~ px(X).

Several types of surrogate models have been proposed for
approximate reliability analysis with the most commonly utilized
methods being polynomial response surfaces, Kriging or Gaussian
process models, support vector machines, and artificial neural net-
works (ANNs). Utilizing a polynomial response surface, the true
limit surface g(X) = 0 is approximated by a kth-order polynomial
with the coefficients estimated from regression. Much of the
research related to polynomial response surfaces has concentrated
on identifying the “best” experimental design that balances the
restrictions of large computational cost associated with perfor-
mance evaluation and accuracy in the coefficient estimation. In
recent years, this has inspired numerous adaptive methods (e.g.
[24-26]). The Kriging or Gaussian process surrogate model builds
upon the polynomial response surface method by considering an
explicit mathematical model (usually constructed from orthogonal
polynomial basis functions [21]) to be the mean of a stationary and
Gaussian stochastic process with assumed covariance structure
[20]. The coefficients associated with the basis functions are then
estimated using regression analysis or Bayesian methods.

A different class of methods are those using principles of
machine learning such as support vector machines or artificial neu-
ral networks (which are utilized herein). Support vector machines
[36] are binary classification tools, wherein a surrogate hyperplane
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