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a b s t r a c t

To estimate and update the reliability of deteriorating structural systems with inspection and monitoring
results, we develop a modeling and computational framework based on dynamic Bayesian networks
(DBNs). The framework accounts for dependence among deterioration at different system components
and for the complex structural system behavior. It includes the effect of inspection and monitoring
results, by computing the updated reliability of the system and its components based on information
from the entire system. To efficiently model dependence among component deterioration states, a hier-
archical structure is defined. This structure facilitates Bayesian model updating of the components in par-
allel. The performance of the updating algorithm is independent of the amount of included information,
which is convenient for large structural systems with detailed inspection campaigns or extensive mon-
itoring. The proposed model and algorithms are applicable to a wide variety of structures subject to dete-
rioration processes such as corrosion and fatigue, including offshore platforms, bridges, ships, and aircraft
structures. For illustration, a Daniels system and an offshore steel frame structure subjected to fatigue are
investigated. For these applications, the computational efficiency of the proposed algorithm is compared
with that of a standard Markov Chain Monte Carlo algorithm and found to be orders of magnitude higher.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures are commonly subjected to deteriora-
tion processes, which can reduce their service life and affect the
safety of the environment, people and the structure itself. For this
reason, significant resources are invested to identify, model, quan-
tify, mitigate and prevent deterioration processes in structures
[61,3,9]. Structural deterioration, such as metal corrosion and fati-
gue, is mathematically represented using mostly empirical or
semi-empirical models [51,12,45,67]. Because of their empirical
nature, predictive deterioration models are typically associated
with significant uncertainty. Hence deterioration is ideally mod-
eled probabilistically [29,23,37,10].

Probabilistic deterioration models are developed mainly at the
structural component level. However, deterioration at different
locations in a structural system is typically correlated, and system
considerations should be made [40,65,59]. Probabilistic models of
deterioration in large structural systems have been proposed and
applied to different types of structures and deterioration processes
[14,18,56,26,48].

Bayesian methods have been used to combine probabilistic
deterioration models with inspection and monitoring outcomes
[62,29,33,54]. They allow quantifying the impact of inspections
and monitoring on the reliability of the structure, and so facilitate
maintenance decisions and the planning of future inspections
[64,7,39,59]. Bayesian analysis is mainly performed at the compo-
nent level, where the probability of failure of a structural compo-
nent due to deterioration is updated with the inspection and
monitoring outcomes. Only a few publications consider the updat-
ing of the reliability at the structural system level. Therein, the
dependence among component deterioration states is modeled
either through the correlation among the deterioration limit states
[40,22,28] or through a hierarchical model [34,8,32,53,49]. More
recently, a number of researchers have considered the planning
and optimization of inspection and maintenance actions in struc-
tural systems with dependent component deterioration
[59,44,43,38].

A challenge in Bayesian system reliability analysis is to keep the
computation time at a feasible level. Methods belonging to classi-
cal structural reliability methods are efficient for estimating the
probability of system failure, but do not facilitate Bayesian analysis
or have computation times that increase exponentially with the
number of observations. Recently, a class of methods has been pro-
posed that efficiently combine structural reliability methods with
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Bayesian updating [55,60]. Nevertheless, also this approach has the
drawback that its performance is a function of the number of
inspection and monitoring data, which can be considerable in
structural systems.

Bayesian networks (BNs) have become popular in engineering
risk analysis due to their intuitive nature and their ability to handle
many dependent random variables in a Bayesian analysis
[17,58,66]. The graphical structure of the BN is formed by nodes
and directed links. The nodes represent random variables or deter-
ministic parameters, and the links the dependence among nodes.
Ideally, the link between two nodes is based on a causal relation,
but this is not necessary. As an example, if deterioration D is mod-
eled as a function of an external random load S and a material
parameter M, then a corresponding BN may look like the one in
Fig. 1. Here, an additional node Z is included, representing an out-
come of an inspection. Since each random variable in the BN is
specified by its conditional probability distribution given its par-
ents, the inspection outcome is defined by pðzjdÞ, i.e. the probabil-
ity of the inspection outcome Z ¼ z given the damage state D ¼ d.
This is known as the likelihood function, and corresponds to clas-
sical models used for describing inspection or monitoring perfor-
mance, such as Probability of Detection (POD). Generally, the BN
is established using commonly available probabilistic models; it
allows combining these in a consistent and (in most cases) intu-
itive manner.

Using BNs it is possible to obtain the posterior distribution of a
set of random variables given a set of observations. This task is
called inference. For instance, if an inspection result is included
in the previously presented example, i.e. if Z is given, then the
(joint) probability distribution of the random variables S, M and
D conditional on the observed value of Z is calculated using infer-
ence algorithms. There are many algorithms available for inference
in BNs [15,21,50]. In this paper, the focus is on BN with discrete
random variables, for which exact inference algorithms exist
[41,17].

The links in the BN provide information on the dependence
between random variables in the model. For example, in the BN
of Fig. 1, M and S are assumed to be independent a-priori, and
hence no direct link between them is present. The link from D to
Z indicates that the inspection provides information on the damage
state. It provides no direct information on S and M. However, it
does so indirectly, because the information obtained on D also
updates the probability distribution of S and M, as long as D is
not known with certainty. In this way, by observing one random
variable, potentially all others are updated. For efficient computa-
tion, all BN inference algorithms make use of the graphical struc-
ture by performing computations locally, exploiting the
conditional independence assumptions encoded in the graph.

Modeling of deterioration often involves random processes,
which can be represented in a discrete-time manner by dynamic
Bayesian networks (DBN), as proposed in [54]. For illustration,
we extend the BN of Fig. 1 to include a time-variant load St and
inspection results at multiple points in time t ¼ 1; . . . ; T . The
resulting DBN is shown in Fig. 2. Each ‘‘slice” of the DBN represents

a time step in the analysis. The random process fS1; S2; . . . ; STg is a
Markov chain where each random variable is defined conditionally
on the random variables of the previous time step. The deteriora-
tion Dt at time t is a stochastic function of the previous deteriora-
tion state Dt�1 and the current load St . The probability distributions
of the material parameterM, the loads fS1; S2; . . . ; STg, and the dete-
rioration states fD1;D2; . . . ;DTg are all updated once inspection
outcomes Z1, . . ., ZT , or a subset thereof, are observed.

In this paper, the DBN model for structural deterioration from
Straub [54] is extended from the component to the system level,
based on work presented by the authors in Luque and Straub
[27]. An efficient algorithm is developed, which assesses the relia-
bility of a deteriorating system when partial observations of its
condition are available. The deterioration factors of the system
components are interrelated using a hierarchical structure and a
set of hyperparameters, which model the correlation structure
among components. In the following section, the concept of
dynamic Bayesian networks and its application to efficiently model
component deterioration are presented. Thereafter, in Section 3,
the model is extended to represent the complete structural system.
Sections 4.1 and 4.2 present two case studies where the model and
algorithm are applied and compared to other methods for estimat-
ing the system probability of failure. To demonstrate the advan-
tages of the proposed algorithm, the number of system
components is increased to a point where classical Markov Chain
Monte Carlo (MCMC) algorithms are no longer efficient for esti-
mating the system reliability.

2. Dynamic Bayesian network for assessing component
deterioration

2.1. DBN model of a single component

The DBN model framework developed in [54] is used to repre-
sent the deterioration of components. This model includes the fol-
lowing elements:

� Time-invariant model parameters h, which are constant in time.
� Time-variant model parameters xt , which vary with time steps
t ¼ 0; . . . ; T .

� Deterioration model: A parametric function h for describing the
deterioration D as a function of t, h, x0; . . . ;xt and the deterio-
ration level at the previous time step Dt�1, i.e.

Dt ¼ DðtÞ ¼ hðt;Dt�1; h;x0; . . . ;xtÞ; t ¼ 1; . . . ; T ð1Þ
� Observations: At any time step t, information on the condition
of a model parameter or the deterioration Dt may be available
from inspections, monitoring systems, recordings of environ-
mental parameters or other measurements, which are related
to the model parameters. These observations are denoted by
Zh;t , Zx;t , and ZD;t , depending on the random variables to which
they relate.

Fig. 3 depicts the generic DBN deterioration model for a single
component, where vectors h1; . . . ; hT are added in order to have a
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Fig. 1. BN deterioration model example. D is the deterioration state, S is an external
load, M is a material parameter and Z is an observation of the deterioration state.
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Fig. 2. DBN deterioration model example.
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