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a b s t r a c t

This paper proposes the application of sequential importance sampling (SIS) to the estimation of the
probability of failure in structural reliability. SIS was developed originally in the statistical community
for exploring posterior distributions and estimating normalizing constants in the context of Bayesian
analysis. The basic idea of SIS is to gradually translate samples from the prior distribution to samples
from the posterior distribution through a sequential reweighting operation. In the context of structural
reliability, SIS can be applied to produce samples of an approximately optimal importance sampling den-
sity, which can then be used for estimating the sought probability. The transition of the samples is
defined through the construction of a sequence of intermediate distributions. We present a particular
choice of the intermediate distributions and discuss the properties of the derived algorithm. Moreover,
we introduce two MCMC algorithms for application within the SIS procedure; one that is applicable to
general problems with small to moderate number of random variables and one that is especially efficient
for tackling high-dimensional problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structural reliability analysis requires the evaluation of the
probability of failure, defined by the following n-fold integral:

Pf ¼
Z
gðxÞ60

f XðxÞdx ð1Þ

where X is an n-dimensional random vector and models the system
variables that are expected to present an uncertain behavior, f XðxÞ
is the joint probability density function (PDF) of X and gðxÞ 6 0
defines the failure event. The function gðxÞ is usually termed
limit-state function and it can include one or several distinct failure
modes [1].

It is common to transform the random variables X to a probabil-
ity space U consisting of independent standard normal random
variables. This is achieved by an isoprobabilistic transformation
U ¼ TðXÞ [2,3]. The probability of failure can be expressed in the
transformed space as

Pf ¼
Z
GðuÞ60

unðuÞdu ð2Þ

where un is the n-variate standard normal PDF and

GðuÞ ¼ gðT�1ðuÞÞ is the limit-state function in U-space.

The integral in Eq. (2) can be evaluated by a variety of existing
approaches [1,4]. These include approximation methods such as
the first/second order reliability method (FORM/SORM), response
surface approaches and simulation techniques based on the Monte
Carlo method. Among these, simulation methods are often pre-
ferred because of their robustness in dealing with complex engi-
neering models. The probability integral can be expressed as the
expectation of the indicator function I GðuÞ 6 0ð Þ, where
I GðuÞ 6 0ð Þ ¼ 1 if GðuÞ 6 0 and I GðuÞ 6 0ð Þ ¼ 0 otherwise. Standard
Monte Carlo estimates Pf by generating ns independent samples
fuk; k ¼ 1; . . . ;nsg from the PDF unðuÞ and taking the sample mean
of I GðuÞ 6 0ð Þ, i.e.

P̂f ¼ Êun
I GðuÞ 6 0ð Þ½ � ¼ 1

ns

Xns
k¼1

I GðukÞ 6 0ð Þ ð3Þ

The estimate of Eq. (3) is unbiased and has coefficient of variation:

dP̂f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pf

nsPf

s
ð4Þ

dP̂f is a measure of the statistical accuracy of P̂f . Although dP̂f does

not depend on the dimension of the random variable space n, it is
inversely proportional to the target probability Pf . Hence for a prob-

ability in the order of 10�k, crude Monte Carlo requires approxi-

mately 10kþ2 samples to achieve an accuracy of dP̂f ¼ 10%.
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Several methods have been proposed that aim at reducing the
variance of the crude Monte Carlo estimate. These include impor-
tance sampling (IS) and its adaptive variants [5–7], line sampling
[8,9] and subset simulation (SuS) [10]. All of the above methods
are based on producing samples that explore the failure region.
In this paper, we discuss a sampling method that adaptively sam-
ples the failure region, termed sequential importance sampling
(SIS). SIS was developed in the statistical community for exploring
posterior distributions and estimating normalizing constants in the
context of Bayesian analysis [11–13]. Although the published vari-
ants of the method diverge in their implementation, they are all
based on the same principle of gradually transforming samples
from a prior distribution to samples from a posterior distribution
through a sequential reweighting operation. A variant of the
method was introduced in the engineering community as transi-
tional Markov chain Monte Carlo [14]. Initial ideas for application
of SIS to structural reliability have been presented in [15]. Therein,
estimation of the intermediate distributions was performed fol-
lowing an algorithm proposed in [16]. This algorithm was further
developed for application to reliability-based optimization in [17].

Here, we present the principle of SIS for structural reliability
and discuss ingredients for its efficient implementation. These
include two Markov chain Monte Carlo (MCMC) algorithms. The
first is an independent Metropolis–Hastings (M–H) algorithm com-
bined with a Gaussian mixture proposal distribution that is suit-
able for application to low to moderate dimensional problems;
the second is a conditional sampling M–H algorithm for applica-
tion in high dimensions. The performance of the proposed algo-
rithms is demonstrated through numerical examples.

2. Sequential importance sampling for reliability analysis

In this section, we introduce SIS for structural reliability. We
first review standard IS; then we describe SIS for sampling from
a sequence of distributions; a particular sequence of distributions
for application to structural reliability is discussed next; subse-
quently we introduce two MCMC algorithms as important ingredi-
ents of SIS for application to different structural reliability
problems; we finally draw a connection between SIS and SuS.

2.1. Importance sampling

Let hðuÞ be a positive density referred to as the IS function. The
integral in Eq. (2) can be rewritten as:

Pf ¼
Z
Rn

I GðuÞ 6 0ð ÞwðuÞhðuÞdu ¼ Eh I GðuÞ 6 0ð ÞwðuÞ½ � ð5Þ

where wðuÞ ¼ unðuÞ
hðuÞ is the so-called importance weight function. An

estimate of Pf can be obtained by generating samples
fuk; k ¼ 1; . . . ;nsg from hðuÞ and taking the sample mean of
I GðuÞ 6 0ð ÞwðuÞ, i.e.

P̂f ¼ Êh I GðuÞ 6 0ð ÞwðuÞ½ � ¼ 1
ns

Xns
k¼1

I GðukÞ 6 0ð ÞwðukÞ ð6Þ

The probability estimate of Eq. (6) is unbiased provided that the
support of hðuÞ contains the failure domain GðuÞ 6 0. An appropri-
ate choice of the IS function can lead to significantly smaller
variance compared to the one of the crude Monte Carlo estimate.
The theoretically optimal IS is given by the following expression:

hoptðuÞ ¼ 1
Pf

I GðuÞ 6 0ð ÞunðuÞ ð7Þ

The IS function of Eq. (7) leads to a variance of the IS estimate of
zero. However, the optimal IS function cannot be used in practice

since it requires knowledge of Pf . Common choices are unimodal
[18,5] or multimodal [6] densities based on initial sampling or other
type of calculations. However, it has been discussed [19,20] that in
settings involving a large number of random variables, IS based on
such densities may fail to describe the important region, leading to
a dramatic increase of the variance of the resulting estimate.

2.2. Sequential importance sampling

Consider a sequence of distributions fhjðuÞ; j ¼ 0; . . . ;Mg, where
each distribution is known up to a normalizing constant, i.e.

hjðuÞ ¼
gjðuÞ
Pj

ð8Þ

where gjðuÞ is known pointwise and the normalizing constant Pj is
unknown. We assume that g0ðuÞ ¼ h0ðuÞ and hence P0 ¼ 1. We fur-
ther postulate that h0ðuÞ is easy to sample from. We are interested
in obtaining samples from hMðuÞ and estimating the normalizing
constant PM . The idea of SIS is to sample the distributions
fhjðuÞ; j ¼ 0; . . . ;Mg in a step-wise manner and estimate each nor-
malizing constant Pj by IS using as IS density the function hj�1ðuÞ.
Assume that at step j� 1 samples fuk; k ¼ 1; . . . ; nsg from hj�1ðuÞ
are available. The constant Pj can be written as:

Pj ¼
Z
Rn
gjðuÞdu ¼ Pj�1

Z
Rn

wjðuÞhj�1ðuÞdu ¼ Pj�1Ehj�1
wjðuÞ
� � ð9Þ

where wjðuÞ ¼ gjðuÞ
gj�1ðuÞ. An estimate of the ratio of normalizing con-

stants Sj ¼ Pj
Pj�1

is given by:

Ŝj ¼ P̂j

P̂j�1

¼ Êhj�1
wjðuÞ
� � ¼ 1

ns

Xns
k¼1

wjðukÞ ð10Þ

To obtain an accurate estimate Ŝj, we need to ensure that the two
densities hj�1ðuÞ and hjðuÞ do not vary significantly. This can be con-
trolled by selecting gjðuÞ such that the variance of the importance
weights is small. Given samples from hj�1ðuÞ, we can obtain samples
from hjðuÞ applying the following resample-move scheme. First, we
apply a resampling method that selects randomly with replacement
samples from fuk; k ¼ 1; . . . ; nsg with probability assigned to each
kth sample proportional to wjðukÞ [21]. We then move the resulting
samples in regions of high probability mass of hjðuÞ by applying
MCMC with invariant distribution hjðuÞ. This procedure is repeated
for each subsequent step and an estimate of PM is obtained as:

P̂M ¼
YM
j¼1

Ŝj ð11Þ

2.3. Choice of intermediate distributions

In the context of structural reliability, SIS can be applied to
obtain samples from an approximation of the optimal IS density
of Eq. (7). The indicator function I GðuÞ 6 0ð Þ can be expressed by
the following limit (e.g. see [22])

I GðuÞ 6 0ð Þ ¼ lim
r!0

U �GðuÞ
r

� �
ð12Þ

where U is the standard normal cumulative distribution function
(CDF). It is noted that this is only one of several equivalent defini-
tions of the indicator function through limits of smooth functions.
Choosing r ¼ rM , with rM small enough, we can approximate
I GðuÞ 6 0ð Þ by the following expression

I GðuÞ 6 0ð Þ � U �GðuÞ
rM

� �
ð13Þ
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