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a b s t r a c t

Subsurface formations with multiple soil/rock strata are a common geological condition for shield-driven
tunnel (i.e., tunnel constructed using shield-driven machines) construction. The excavation face, under
such conditions, often encounters a frequently changing stratigraphic configuration that consists of var-
ious lithological units. Furthermore, due to a lack of direct and continuous observations of the subsurface
region, it is difficult to predict the stratigraphic profile along the entire excavation path with a high
degree of certainty. Such a widely changing and uncertain excavation environment may lead to wide
variation in the state of stress and deformation of the tunnel structure along the longitudinal direction.
This poses a challenge for design engineers in obtaining accurate performance evaluations or reasonable
design outcomes for tunnel construction in subsurface ground with multiple strata. This paper aims to
address this challenge by presenting a stochastic geological modeling framework for uncertainty quan-
tification of stratigraphic profiles using sparsely located observation information from geotechnical site
investigations. In the proposed modeling framework, the underground soil stratigraphic profile is
regarded as a Markov random field with specific energy functions, which is able to describe the inherent
anisotropic and non-stationary spatial correlation of lithological units in the subsurface stratigraphic
structure. By incorporating the developed stochastic geological modeling framework with a finite ele-
ment simulation of the tunnel excavation, a probabilistic analysis approach is established to evaluate
the effects of stratigraphic uncertainty on the structural performance of a shield-driven tunnel.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Shield-driven tunnel (i.e., tunnel constructed using shield-
driven machines) construction typically involves excavation in
subsurface regions with multiple lithological formations, as
reported from engineering practice in Brazil [1], China [2], Korea
[3] and Singapore [4]. Under such complex geological conditions,
it is extremely difficult to obtain accurate subsurface geological
information in advance, due to limitations of geotechnical investi-
gation techniques and project budgets. Without accurate geologi-
cal information along the tunnel alignment, conventional design
based on analysis of subjectively selected critical cross sections
may not always be conservative, even when a large factor of safety
is adopted [5]. Thus, it seems that employing probabilistic analysis

approaches that are able to incorporate geological uncertainties in
tunnel construction is a logical step toward a more sensible analy-
sis and design outcome.

For design and construction of geotechnical structures in multi-
ple lithological strata, geological uncertainties originate from two
main sources: interpretation of stratigraphic configuration and
determination of material properties of each lithological formation.
In the past, a considerable amount of effort [6–12] has been
devoted to developing methods for determining the geomaterial
properties and their spatial correlations in the probabilistic/reliabil
ity-based analysis and design for geotechnical structures. Such
methods have been applied to assess risk for foundation systems
[13,14], slope stabilization [15,16], and tunnels [17,18]. However,
there has been relatively little effort spent in developing methods
for quantifying stratigraphic uncertainty (i.e., uncertainties related
to inference of the configurations of subsurface soil/rock profiles).
A limited number of techniques utilizing geostatistical methods
or variogram-based interpolation methods [19–23] can provide
optimal but deterministic estimates of the contact boundaries

http://dx.doi.org/10.1016/j.strusafe.2016.06.007
0167-4730/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: superwxr@pku.edu.cn (X. Wang), zl28@zips.uakron.edu (Z. Li),

wang@aices.rwth-aachen.de (H. Wang), qrong@pku.edu.cn (Q. Rong), rliang@
uakron.edu (R.Y. Liang).

Structural Safety 62 (2016) 88–100

Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/ locate/s t rusafe

http://crossmark.crossref.org/dialog/?doi=10.1016/j.strusafe.2016.06.007&domain=pdf
http://dx.doi.org/10.1016/j.strusafe.2016.06.007
mailto:superwxr@pku.edu.cn
mailto:zl28@zips.uakron.edu
mailto:wang@aices.rwth-aachen.de
mailto:qrong@pku.edu.cn
mailto:rliang@uakron.edu
mailto:rliang@uakron.edu
http://dx.doi.org/10.1016/j.strusafe.2016.06.007
http://www.sciencedirect.com/science/journal/01674730
http://www.elsevier.com/locate/strusafe


between lithological formations. Nevertheless, these methods can-
not provide the measure of probability/credibility of the inter-
preted stratigraphic configuration; thus, they are unable to
provide a quantitative estimate of the stratigraphic uncertainty.
Stochastic modeling frameworks, such as Markov chain model
[24] and multiple-point geostatistics [25–28], are able to generate
stratigraphic samples to form the corresponding probability distri-
bution. However, these methods have evoked strong assumptions,
such as stationary transition probability matrices or predefined
data templates. Therefore, further development of methodologies
for modeling stratigraphic configurations in a probabilistic manner
and quantifying stratigraphic uncertainty are still needed.

The requirement of stratigraphic uncertainty quantification is
further heightened in analysis and design of geotechnical projects
related to long linear structures such as underground tunnels. With
a length of thousands of meters, the surrounding stratigraphic con-
figurations encountered by the tunnel excavation face can vary
greatly from one location to another. Such variable and uncertain
stratigraphic configurations can exert significant effects on a tun-
nel’s structural performance (e.g. surface settlement, bending
moment and convergence), as highlighted by numerous investiga-
tions including analytical methods, model experiments and
numerical simulations [2,29,30]. Thus, there remains a critical
need for developing a stratigraphic uncertainty quantification
framework and a compatible probabilistic analysis approach that
can be used for analyzing such long, linear geotechnical structures.

In this paper, we present a novel stochastic geological modeling
framework for quantifying stratigraphic uncertainty for a large-
scale geological body, conditional on available observation infor-
mation. In the proposed modeling framework, a Markov random
field (MRF) with a specific energy functions is employed to capture
the anisotropic and non-stationary spatial correlation of lithologi-
cal units in stratigraphic structures. By combining the presented
modeling framework with finite element analysis (FEA), we estab-
lish a probabilistic analysis approach for an underground tunnel
with consideration of stratigraphic uncertainty along the tunnel
alignment.

This paper is organized in the followingmanner. In Section 2, we
introduce the mathematical background of the MRFs and the pro-
posed spatial correlation model in terms of potential functions for
modeling the subsurface stratigraphic profile. In Section 3, a
detailed description is provided to illustrate the stratigraphic
uncertainty quantification process for a shield-driven tunnel exam-
ple, based on the stochastic geological modeling framework. In Sec-
tion 4, a series of stratigraphic configurations, as a probabilistic
description for the real stratigraphic profile, are further input into
an FEA program to calculate stress and deformation behavior of
the studied shield-driven tunnel, which reveals the effects of strati-
graphic uncertainty on the structural behaviors of the tunnel. Speci-
fic conclusions regarding the possible application of the proposed
probabilistic analysis approach for an underground tunnel design,
considering stratigraphic uncertainty, are given in Section 5.

2. Stochastic geological modeling framework

The subsurface stratigraphic profile can be regarded as a spa-
tially correlated system of a configuration of several lithological
units. In this study, an MRF prior is employed as a statistical model
to describe the subsurface stratigraphic profile for its two favored
features. First, the posterior distribution of an MRF is usually feasi-
ble and easily to obtained through efficient Markov chain Monte
Carlo (MCMC) sampling methods. Second, the MRF prior can be
specified by defining a certain potential function; therefore, it is
convenient to implement the desired characteristics into an MRF
to obtain the appropriate posterior outcome. With these attractive

features, MRF priors have been successfully applied to the field of
geoscience for handling problems, such as geological mapping
[31] and land-cover classification [32]. In this section, we will
introduce the mathematical structure of the MRF, as well as the
proposed spatial correlation model in terms of potential functions
for the stochastic modeling of subsurface stratigraphic profiles.

2.1. Neighborhood system, Markov random field and Gibbs sampler

For encoding a complete distribution over a two-dimensional
space, an MRF is constructed on a graphic-based representation
of the geological body using a certain discretization scheme.
Herein, the domain of the stratigraphic profile is discretized into
a finite set of elements E, using a uniform square lattice. In such
a meshed plot, the adjacent elements that share at least one node
are regarded as neighbors to each other, and Ns denotes a local
neighborhood system consisting of all the neighbors of a given ele-
ment s. Next, the set of elements E and its neighborhood system
N ¼ fNs s 2 Ej g form a graph G ¼ ðE;NÞ on which the MRF is built.
In the MRF, we assign each element a lithological label from a finite
set L of labels (representing all lithological units in the modeled
domain) to form a random subsurface stratigraphic configuration
x ¼ fxs s 2 E;xs 2 Lj g. We use xs and xA to represent the labels
given by the configuration x to the element s and a subset of ele-
ments A 2 E, respectively. Then, we denote a configuration space
that contains all possible subsurface stratigraphic configurations
as X ¼ fx ¼ fxsg s 2 E;xs 2 Lj g. A prior joint probability PðxÞ
defined on X is said to define an MRF if its local characteristics,
referred to as the conditional probabilities Pðxs xE�fsg

�� Þ, depend
only on the labels of the neighboring elements, with the expression
as follows:

Pðxs xE�fsg
�� Þ ¼ Pðxs xNsj Þ ð1Þ

The form of the conditional probabilities in Eq. (1) is the direct
and clear mathematical description of the Markovianity of an MRF.
However, it is unrealistic to formulate an MRF based on such a def-
inition, since there is no obvious method available for deducing the
joint probability from the associated conditional probabilities [33].
An alternate way of formulating the MRF is to represent it in terms
of an equivalent Gibbs distribution according to the Hammersley–
Clifford theorem [34]. Detailed proofs of such equivalence can be
found in Besag [33] and Li [35]. In this way, the joint probability
PðxÞ of an MRF can be expressed in terms of a Gibbs measure
pðxÞ:

PðxÞ ¼ pðxÞ ¼ 1
Z
expð�UðxÞ=TÞ ð2Þ

where UðxÞ is the energy of configuration x, which depends upon
its label assignment. In Eq. (2), Z is a normalizing constant called the
partition function and has the form:

Z ¼
X
x2X

expð�UðxÞ=TÞ ð3Þ

while T stands for ‘‘temperature” in the simulated annealing algo-
rithm. The common form of T and relevant discussions can be found
in Geman and Geman [34].

Although Eq. (3) provides the analytical form of the partition
function Z, it is computationally intractable since the number of
terms in this sum is typically too large. However, as Z is a constant,
the maximum a posteriori (MAP) estimate ~x with the largest
density of the joint probability PðxÞ, i.e.,
~x ¼ argmax

x2X
PðxÞ ð4Þ

can be obtained through stochastic simulation on the configuration
space X using Gibbs sampling. As a specific MCMC sampling
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