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In the kinetic analysis of dynamic PET data, one usually posits that the

variation of the data through one dimension, time, can be described by

a mathematical model encapsulating the relevant physiological features

of the radioactive tracer. In this work, we posit that the remaining

dimension, space, can also be modeled as a physiological feature, and

we introduce this concept into a new computational procedure for the

production of parametric maps. An organ and, in the instance

considered here, the brain presents similarities in the physiological

properties of its elements across scales: computationally, this similarity

can be implemented in two stages. Firstly, a multi-scale decomposition

of the dynamic frames is created through the wavelet transform.

Secondly, kinetic analysis is performed in wavelet space and the kinetic

parameters estimated at low resolution are used as priors to inform

estimates at higher resolutions.

Kinetic analysis in the above scheme is achieved by extension of the

Patlak analysis through Bayesian linear regression that retains the

simplicity and speed of the original procedure. Application to artificial

and real data (FDG and FDOPA) demonstrates the ability of the

procedure to reduce remarkably the variance of parametric maps (up

to 4-fold reduction) without introducing sizeable bias. Significance of

the methodology and extension of the procedure to other data (fMRI)

and models are discussed.
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Introduction

In positron emission tomography (PET), kinetic models are

used to extract quantitative parameters through the mathematical

description of the time activity course (TAC) of the radiotracer

uptake in the organ of interest. Compartmental models, or derived

computational simplifications, are applied to the TACs of

anatomical regions of interest (ROIs) or to each pixel of the image

sequence, and the model parameters are estimated (Blomqvist,

1984; Mazoyer et al., 1986).

In this context, mathematical models are intended as suitable

approximations of the relevant physiological processes. Until now,

the considerable literature in the field has developed models for

one data dimension only, time, in that there does not seem to be

any physiological quality in the remaining dimension, space.

Further consideration of the property of a dynamic PET acquisi-

tion, however, may tell that this quality indeed exists.

PET is meant for the imaging of living organs (as opposite to

inert objects). It is a feature of an organ that the physiological

properties of its components at different resolutions share a

similarity of some degree. Likewise, we can say that the kinetic

parameters of a small area of tissue have a quantitative

resemblance to the same parameters when averaged over a larger

area inclusive of that region.

We have translated this observation into a novel approach for

the generation of parametric maps from PET studies. The idea is to

create, firstly, a multi-resolution decomposition of the PET

dynamic acquisition. Next, the kinetic parameters are calculated

starting at the lowest resolution and then proceeding to the finer

scales using the estimates of the lowest resolution as priors.

The statistical advantage of this procedure compared to

traditional pixel-by-pixel estimation is that the superior quality of

the parameter estimates at lower resolutions, where noise is low,

can be used to regularize estimates at the noisier levels down to the

single pixel resolution. Note that, compared to traditional Bayesian

approaches, prior information must not be specified in advance but

is generated from the data.

The principle of multi-scale self-similarity in physiological

processes has been explored before (Bassingthwaighte et al.,

1989), particularly in the context of fractal analysis, and recently

used in the analysis of PET images (Dimitrakopoulou-Strauss et

al., 2001; Kalliokoski et al., 2001; Strauss et al., 2004; Venegas and
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Galletti, 2000) as well as in the analysis of fMRI time-series

(Bullmore et al., 2001; Shimizu et al., 2004), but, to our

knowledge, it has not been implemented in a computational

method for PET.

Previous general Bayesian approaches to kinetic modeling

(Sparacino et al., 2000) and more specific attempts in PET

(O’Sullivan and Saha, 1999; Turkheimer et al., 2003b; Wilson et

al., 1988) have relied on the implementation of physiological

constraints on the model parameters and have achieved interesting

reduction of variability in parameter estimates.

In this manuscript, we provide a simple but efficient method

for the implementation of scale self-similarity through Bayesian

linear regression. We describe the details of the methodology

and undertake its validation through simulated and real PET

data. The focus of the application is the production of

parametric maps but, as it will be clear further on, the method

has a straightforward extension to TAC obtained from regions

of interest.

Theory

Multi-resolution kinetic modeling is achieved through two

sequential steps. Firstly, the multi-scale decomposition of PET

images is performed by application of the wavelet transform

(WT) (Mallat, 1989). Subsequently, parameter estimates

obtained at the lowest resolutions are used as priors for the

following levels through Bayesian statistical modeling (Gelman

et al., 1995). Finally, the parametric map in wavelet space is

transformed back to produce a parametric map in native image

space.

Multi-resolution decomposition in wavelet space

The multi-scale decomposition of PET dynamic images in

wavelet space and subsequent application of standard kinetic

modeling has been described before (Turkheimer et al., 2000,

2003a), and it will only be summarized here.

Let b(s) be the spatial distribution of the parameter of interest,

where s indexes space as s:s = (x, y, z). b(s) is estimated from V(s,t),

the time-changing distribution of a suitable radioactive tracer

measured with PET. V(s,t) consists of M serial scans V(s,t1),

V(s,t2), . . ., V(s,tM) indexed by the M mid-frame times ti.

The mathematical relationship between the kinetic of the

radiotracer and the parameter is implemented by the operator g( )
so that:

b sð Þ ¼ g V s; tð Þð Þ ð1Þ

where g( ) can be of linear or nonlinear form and is usually derived

from a compartmental model.

Let Y(s,t) = V(s,t) + ((s,t) be the measured realization of the

dynamic sequence V that is corrupted by the noise process (.
Frames Y(s,t1), Y(s,t2), . . ., Y(s,tM) are images reconstructed from

sinograms ideally at their highest resolution. Direct application of

model in Eq. (1) to Y(s, t) generates the pattern

b sð Þ ¼ g Y s; tð Þð Þ ¼ g V s; tð Þ þ e s; tð Þð Þ: ð2aÞ
If g( ) is linear, then Eq. (2a) can be written as:

B sð Þ ¼ g V s; tð Þð Þ þ g e s; tð Þð Þ ¼ b sð Þ þ f sð Þ; ð2bÞ

and f(s) is the noise of the spatial pattern B(s).

Alternatively, the kinetic operator g( ) can be applied in wavelet

space. The discrete wavelet transform (DWT) in 3 dimensions is

applied to each frame of the dynamic acquisition Y(s, t) generating

an equivalent dynamic sequence in wavelet space YW(w, t) where t is

again time and w spans the three-dimensional (3D) wavelet space.

We define the DWToperator asW andW�1 is its inverse. Formally,

each frame in wavelet space YW(w, ti) is obtained as:

YW W ; tið Þ ¼ W Y s; tið Þð Þ: ð3Þ

Kinetic analysis is performed in wavelet space as:

BW Wð Þ ¼ g YW W ; tð Þ
� �

: ð4Þ

The parametric map in wavelet space BW(w) can then be

projected back into native space by application of the inverse

DWT. Since the DWT is a linear and orthogonal operator, if g() is
also linear, then the estimation problem in wavelet space is

equivalent to that of image space (Turkheimer et al., 2003a) and:

B sð Þ ¼ W�1 BW Wð Þ
� �

: ð5Þ

There are a number of advantages in performing kinetic

modeling in wavelet space, amplification of the signal-to-noise

ratio and noise decorrelation being the two most commonly

described (Cselenyi et al., 2002; Turkheimer et al., 2000). Here, we

take advantage of the multi-resolution property of the decompo-

sition whose elements, the wavelets, can be put in relation through

an appropriate model.

Linear regression in wavelet space

In standard practice, the generation of parametric maps in PET

relies on some form of linear regression, the two most popular

approaches being the Patlak plot for irreversible radiotracers

(Gjedde, 1981; Patlak and Blasberg, 1985; Patlak et al., 1983) and

the Logan plot for those with reversible kinetic (Logan et al., 1990,

1996), and relation in Eq. (5) is therefore granted. Note, however,

that the linearization procedure leading to the regression for the

Logan plot introduces distortions in parameter space (Slifstein and

Laruelle, 2000). For the purposes of this work, we therefore focused

on the Patlak plot for irreversible radiotracers (see Discussion).

After a suitable timepost-injectionof the radiotracer, thekinetic of

an irreversible radiotracer can be approximated by the linear model:

CT tð Þ ˜ bCp tð Þ þ m X

0

t
Cp sð Þds: ð6aÞ

In Eq. (6a),CT(t) is the total tissue radioactivity,Cp(t) is a suitable

input function (see the Materials and methods section for details on

the implementations for specific radiotracers) and b and m the

regression parameters. The following simplification

CT tð Þ
Cp tð Þ ˜ bþ m

X
0

t Cp sð Þds
Cp tð Þ ð6bÞ

transforms the estimation problem in the linear regression problem:

y0 ¼ X0b0 ð6cÞ

Parameters of the model are the regression coefficients b0 =

[b m]V, where V indicates the transpose.

In wavelet space, the regression in Eq. (6c) consists of the M �
1 response variable Y0 ¼ yW w;tð Þ

Cp tð Þ , and the M � 2 predictor matrix

X0 ¼ IM ;1
X
t

0Cp sð Þds
Cp tð Þ

ih
, where IM,1 is an M � 1 identity vector.

F.E. Turkheimer et al. / NeuroImage 32 (2006) 111–121112



Download English Version:

https://daneshyari.com/en/article/3074397

Download Persian Version:

https://daneshyari.com/article/3074397

Daneshyari.com

https://daneshyari.com/en/article/3074397
https://daneshyari.com/article/3074397
https://daneshyari.com

