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a b s t r a c t

This paper presents an approach for reliability analysis of engineering structures, referred to as
Metamodel Line Sampling (MLS). The approach utilizes a metamodel of the performance function, within
the framework of the Line Sampling method, to reduce computational demands associated with the
reliability analysis of engineering structures. Given a metamodel of the performance function, the failure
probability is estimated as a product of a metamodel-based failure probability and a correction coeffi-
cient. The correction coefficient accounts for the error in the metamodel estimate of failure probability
introduced by the replacement of the performance function with a metamodel. Computational efficiency
and accuracy of the MLS approach are evaluated with the Kriging metamodel on analytical reliability
problems and a practical reliability problem of a monopile foundation for offshore wind turbine. The
MLS approach demonstrated efficient performance in low to medium-dimensional reliability problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability analysis is performed to address the inherent ran-
domness of structural parameters and a lack of knowledge about
the driving processes defining the behavior of structures. A pri-
mary interest in reliability analysis of structures is to evaluate
the probability of unsafe or undesired state of the structure, i.e.,
failure probability, PF . Given an n-dimensional vector of random
variables affecting the performance of a structure,

Z ¼ Z1; . . . ; Zn½ �T 2 X, in the variable space X, associated with the
joint probability density function (pdf), f ZðzÞ; PF is defined as:

PF ¼ PðZ 2 FÞ ¼
Z
F
f ZðzÞdz ¼

Z
Rn

IFðzÞf ZðzÞdz ð1Þ

where z 2 Rn denotes a realization of Z; F is the failure domain, IF is
an indicator function such that IFðzÞ ¼ 1 if z 2 F and IFðzÞ ¼ 0 other-
wise. In this study, Z is defined as a vector of independent standard
normal random variables with the joint pdf /Z, in the standard nor-
mal space X. In the case of a general random vector X, composed of
non-normal and dependent random variables, it is assumed that a
probability preserving transformation, Z ¼ HX;ZðXÞ (e.g., Nataf [7])

exists. It is worth noting that the transformations to the standard
normal space are often approximate and can introduce additional
nonlinearities in the shape of the failure domain.

The state of a structure or an engineering system is commonly
evaluated by a so-called performance function, gðzÞ. gðzÞ plays a
central role in the reliability analysis of structures, because it sep-
arates the n-dimensional variable space X into a safe gðzÞ > 0, and
an unsafe domain z 2 F � Rn : gðzÞ 6 0f g by the hypersurface
denoted as the failure limit state z 2 L : gðzÞ ¼ 0f g. In the majority
of applications gðzÞ is an implicit function of the random structural
parameters, z, (e.g., finite element model). The implicit formulation
of the performance function introduces constraints on the applica-
ble mathematical tools for the evaluation of PF , as often only point-
wise evaluations of the performance function and its gradients are
obtainable.

Analytical solutions of PF are achievable only for a limited group
of problems with explicit formulations of gðzÞ and simple defini-
tions of failure domains. In reliability analysis of structures, PF is
often evaluated numerically by employing optimization (e.g., First
and Second Order Reliability Method) or sampling methods (e.g.,
Monte Carlo, Importance Sampling, Subset Simulation) [22].
Among these, the Monte Carlo (MC) method is widely used due
to its straightforward implementation and robust performance
[22]. The MC method is based on drawing N independent identi-
cally distributed (i.i.d.) samples zi � /ZðzÞ; i ¼ 1; . . . ;N and evalu-
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ating gðziÞ at these samples. The unbiased estimate of the failure

probability, P̂F , is calculated as the ratio of the number of failed
samples, NF , over the total number of samples, N:

P̂F ¼ 1
N

XN
i¼1

IFðziÞ ¼ NF

N
ð2Þ

where NF is binomial distributed random variable, which leads to

the coefficient of variation of P̂F ;CoVðP̂FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� P̂FÞ=ðP̂FNÞ

q
. Inves-

tigation of the CoVðP̂FÞ reveals that the P̂F is independent of the
dimensionality of the problem in the MC method, and that the

CoVðP̂FÞ reduces with increasing N. For a small P̂F , a relatively large

N is necessary to obtain a reasonably low CoVðP̂FÞ. Large numbers of
simulations of gðzÞ are frequently infeasible to execute as the mod-
els used to evaluate gðzÞ can be computationally demanding.
Although the MC method is accurate, robust and independent of
the dimensionality of the reliability problem, the method is consid-
ered to be inefficient when evaluating small PF and/or when com-
putationally intensive structural models are used to evaluate the
performance function.

The previously mentioned inefficiency of the MC method has
led to the development of various methods suited for the estima-
tion of small PF in probabilistic analysis of structures. The Impor-
tance Sampling (IS) method, based on the MC approach,
introduces an importance pdf with a relatively high density over
the failure domain of the variable space (e.g., [2]). By sampling

the importance pdf, the IS method can provide P̂F with reduced
computational expense when compared to the MC method [22].
A series of benchmark tests conducted in [22] showed that the IS
approach is applicable in low to medium-dimensional problems
(n < 100) with efficiency and accuracy dependent on the imple-
mentation of the method. The Line Sampling (LS) method, based
on the IS approach, evaluates PF by a number of conditional one-
dimensional reliability problems along an important direction,
which points to the failure domain nearest to the origin of X
[22]. Benchmark tests in [22] showed high accuracy and efficient
performance of the LS method in high-dimensional problems.

An alternative method for estimating PF in high-dimensional
problems is the Subset Simulation (SS) method [1]. In the SS
method, PF is expressed as a product of a series of conditional fail-
ure probabilities corresponding to, prior to the analysis, unknown
intermediate failure limits. The conditional failure probabilities can
be selected to be relatively high (e.g., P ¼ 0:1), requiring conse-
quently a small number of samples to be evaluated accurately.

Reductions in computational demands associated with the reli-
ability analysis of engineering structures can be also achieved by
replacing gðzÞ with a computationally less expensive metamodel
~gðzÞ. Metamodels are commonly built by implementing statistical
learning methods [12] (e.g., Neural Networks [20], Support Vector
Machines [3,13], regression, or Kriging [8]) on a set of observations
of gðzÞ in the variable space. Several metamodel implementations
showed high efficiency and accuracy in low to medium-
dimensional problems (n < 100) (e.g., [8,3]).

An approach which aims at reducing computational cost com-
monly associated with the reliability analysis, referred to as Meta-
model Line Sampling (MLS), is presented in this study. The MLS
approach combines the efficiency of the LS method with a rela-
tively low computational cost of ~gðzÞ to provide reductions in com-
putational expenses. Given ~gðzÞ; PF is evaluated as a product of a
metamodel-based failure probability and a correction coefficient.
The correction coefficient accounts for the uncertainty in the
metamodel-based failure probability, resulting from the replace-
ment of gðzÞ with ~gðzÞ. The performance of the MLS approach is

evaluated on analytical reliability problems and a practical reliabil-
ity problem of a monopile foundation for offshore wind turbine.

2. Metamodel Line Sampling

2.1. Line Sampling

LS is a method which formulates a reliability problem as a num-
ber of conditional one-dimensional reliability problems in the
standard normal space [21]. The formulation of the LS method is
based on the assumption that an important direction, a, can be
approximated. a points to the region of the failure domain nearest
to the origin of X, as illustrated in Fig. 1. An MC estimate of PF is
calculated based on a number of conditional one-dimensional reli-
ability problems along a. The one-dimensional reliability problems
are conditioned on the MC samples from the ðn� 1Þ-dimensional
standard normal space of random variables orthogonal to a. Based
on the set of benchmark tests [21], it is reported that the LS
method has a wide range of applications in reliability analysis of
structures, except for strongly nonlinear performance functions
where a cannot be estimated.

Given a, the failure domain, F, can be expressed as shown in
[21]:

F ¼ z 2 Rn : za 2 Faðz?1 ; . . . ; z?n�1Þ
� � ð3Þ

where za is a realization of the random variable, Za, which is defined
along a; z? 2 Rn�1 is a realization of a vector of random variables
orthogonal to a, denoted as Z?, while Fa is a function representing
the failure domain along a, defined on Rn�1 [21]. Then PF can be
expressed as:

PF ¼
Z
Rn

IFðzÞ/ZðzÞdz ¼ Ez? UðFaðz?ÞÞ
� � ð4Þ

In the case that Faðz?Þ lies within the half open interval ½bðz?Þ;1Þ,
the one-dimensional conditional failure probability can be evalu-
ated as UðFaðz?ÞÞ ¼ Uð�bðz?ÞÞ, where bðz?Þ is a ‘reliability index’,
as indicated in Fig. 1. An unbiased estimate of PF is calculated on
a set of samples z?i � /Z? ðz?Þ : i ¼ 1; . . . ;N

� �
as:

P̂F ¼ 1
N

XN
i¼1

UðFaðz?i ÞÞ ¼
1
N

XN
i¼1

Uð�bðz?i ÞÞ ¼
1
N

XN
i¼1

PFi ð5Þ

where PFi ¼ Uð�bðz?i ÞÞ. Variance of the estimator P̂F is estimated as:

VarðP̂FÞ ¼ 1
NðN � 1Þ

XN
i¼1

PFi � P̂F

� �2
ð6Þ

Coefficient of variation of P̂F , defined as CoVðP̂FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðP̂FÞ

q
=P̂F ,

is commonly used as a convergence measure of P̂F .

2.2. Metamodel-based failure probability

As discussed in Section 1, reliability analysis of structures can
be a computationally intensive and time consuming task. One of
the approaches to reduce the computational demands is to approx-
imate gðzÞ with a computationally less expensive metamodel, ~gðzÞ.
A metamodel is commonly constructed by implementing statistical
learning methods on a set of observations of gðzÞ obtained with an
information gathering process known as Design of Experiments
(DoE) (e.g., Latin Hypercube Sampling). Some of the early
metamodels employed first- and second-order polynomials to
approximate the limit state in the proximity of the design point
(i.e., the most probable point at the limit state) (e.g., [4]). More
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