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a b s t r a c t

Efficient estimate of the small first passage probabilities of nonlinear structures under random excita-
tions is of great importance in structural reliability analysis. Some methods, such as the subset simulation
method, tail equivalent linearization method, asymptotic sampling method, Monte Carlo simulation
method based on the extreme value theory, etc., have been developed for estimating the probabilities,
however, the efficiency of the estimate is still a challenging task. In the present study, a new method
is developed to overcome the challenge. The method approximates the tails of the univariate extreme dis-
tributions of the responses by using the shifted generalized lognormal distributions, in which the model
parameters are estimated by an efficient method called the extrapolation method. Based on the approx-
imate tail distributions and covariances of the extreme responses, the tails of the multivariate extreme
distributions of the nonlinear response are determined by using the Nataf model. Finally, from the rela-
tionship between the first passage probabilities and the extreme value distributions, the small first pas-
sage probabilities of interest can be estimated. The efficiency of the developed method is illustrated by
the small first passage probability analyses of a single-degree-of-freedom system subjected to a station-
ary Gaussian process and two connected electric substation equipment items subjected to earthquake
base motion.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The efficient estimate of the small probabilities of failure, i.e.,
small first passage probabilities, of nonlinear structural systems
under random excitations is of great importance and also a chal-
lenging task. The methods developed for the problem, such as
the Monte Carlo (MC) simulation method [1], equivalent lineariza-
tion method [2], Fokker–Planck equation method [2], stochastic
averaging method [3], moment closure method [2], path integra-
tion method [4], probability density evolution method [5], etc.,
cannot efficiently estimate the small probabilities of first-passage
failure of nonlinear random systems due to the their respective
limitations. Therefore, the subset simulation method [6], tail
equivalent linearization method [7], asymptotic sampling method
[8] and MC simulation methods based on the extreme value theory
[9,10] have been developed recently. These methods have been
successfully applied to a large variety of nonlinear structure
systems under random excitations, however, they also have some
limitations in practical applications. For example, the subset simu-
lation method requires a new simulation run when a different and

smaller reference time is considered, the tail equivalent lineariza-
tion method needs to repeatedly determine the equivalent linear
systems when the response of interest is at the nonstationary state
or a different response is considered, the asymptotic sampling
method may lead to the large discrepancies of the estimates of
the small failure probabilities if the unsuitable support points are
chosen, and the MC simulation methods based on the extreme
value theory require that the reference times are sufficiently long
such that the extreme values of the responses of interest can be
assumed to follow the generalized extreme value distributions
approximately. Thus, there is a need for more efficient methods
to be developed for estimating the small probabilities of failure,
i.e., first passage probabilities, of nonlinear structure systems
under random excitations.

In fact, for nonlinear structures under random excitations, the
first passage probabilities of the response processes are identical
to the corresponding exceedance probabilities of the extreme val-
ues of the responses [2,10]. Therefore, the small probabilities of
failure can be estimated if the tail distributions of the extreme
responses can be determined. As mentioned above, the generalized
extreme value distribution has been adopted to fit the extreme
values of the nonlinear random responses with sufficiently long
reference times [9,10]. However, in the cases of short reference
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times, the assumption that the extreme value responses follow the
generalized extreme value distribution is invalid and, conse-
quently, the resulting small probabilities of failure may exhibit
large numerical errors [11]. Hence, more suitable distributions
should be chosen to fit the extreme response distributions, partic-
ularly in the tail regions, such that the small probabilities of failure
can be estimated with enough high accuracy.

More recently, a new distribution called the shifted generalized
lognormal distribution (SGLD) for fitting four moments has been
developed [12]. The distribution has a rich flexibility in shape that
nearly encompasses the entire skewness–kurtosis region permissi-
ble for unimodal densities and has been applied to fit several the-
oretical distributions and actual datasets with very favorable
results, particularly in the tail regions. If we can show that the
SGLD is suitable to fit the tail distributions of the extreme values
of responses of nonlinear structures under random excitations
and its parameters can also be efficiently estimated, then the chal-
lenge of estimating the small probabilities of failure of nonlinear
structures under random excitations can be overcome to some
degree.

In the present study, mainly based on the SGLD, we will develop
an efficient method to estimate the tail distributions of the univari-
ate and multivariate extremes of responses of nonlinear structures
under random excitations, from which the small probabilities of
failure of the nonlinear random vibration systems can be efficiently
estimated. The efficiency of the developed method will be illus-
trated by two numerical examples, including a hysteretic oscillator
subjected to a stationary Gaussian process and a mechanical sys-
tem modeling two connected electric substation equipment items
under the action of random earthquake load.

2. Brief description of the SGLD

The intention of the SGLD is to construct a unimodal distribu-
tion density under four moment constricts. The distribution is
developed by combining the three-parameter lognormal distribu-
tion [13] and generalized Gaussian distribution (GGD) [14]. The
three-parameter lognormal distribution is an asymmetrical distri-
bution and it and its reverse counterpart encompass the entire
range of skewness, while the GGD is a symmetrical distribution
and encompasses the entire range of kurtosis. Therefore, through
synthesizes the features of the two distributions, the SGLD has a
high flexibility in shape, nearly encompassing the entire skew-
ness–kurtosis region permissible for unimodal densities. To define
the SGLD, one should always consider the absolute value of skew-
ness of the involved variable. If the skewness is less than zero, then
through mirroring the resulting probability density function (PDF)
about the mean value of the variable one can obtain the intended
PDF. Similarly, through mirroring the resulting cumulative proba-
bility function (CDF) about the mean value of the variable one
can obtain the intended CDF when the involved skewness is less
than zero.

The PDF and CDF of a SGLD variable X with the positive skew-
ness are given by, respectively
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where b is the location parameter, h is the scale parameter, 0 < r
and 0 < r are the shape parameters, the coefficient a is defined as
a = 1/[2r1/rrC(1 + 1/r)], here C(�) denotes the gamma function, sgn

(�) denotes the signum function, and . is the lower incomplete

gamma function ratio, i.e., .ðs; zÞ ¼
Z z

0
ts�1e�tdt=CðsÞ.

The above PDF, i.e., Eq. (1), is unimodal and asymmetric for
r > 0. In the limiting case r? 0 the SGLD converges to the GGD.
Other special/limiting cases of the SGLD model are: when r = 2
and b = 0, the SGLD reduces to the lognormal distribution; when
r = 2 and b– 0, the SGLD reduces to the 3-parameter lognormal
distribution; when r = 1 and b = 0, the SGLD reduces to the
Log-Laplace distribution; whereas for r?1 and b = 0 the SGLD
converges to the Log-uniform distribution.

By making the substitution p = FX(x) in the left-side-hand of Eq.
(2) and noting that sgn((x � b)/h � 1) = sgn(p � 1/2), the inverse
CDF of the SGLD is obtained as
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and x = b + h for p = 1/2. Where, .�1 is the inverse of the lower
incomplete gamma function ratio, defined such that z = .�1(s,x)
corresponds with x = .(s, z).

Although the SGLD is a 4-parameter distribution, the parameter
estimation of a SGLD only involves two variables, i.e., the shape
parameters r and r, since for each fixed pair (r, r) the location
and scale parameters can be computed from h = rX/rY and
b = lX � hlY, where lX and rX are the mean value and standard
deviation of X and lY and rY are the mean value and standard
deviation of the reduced variable Y = (X � b)/h, which can be com-
puted from the fixed r and r by the following raw-moments for-
mula [12]
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For the case that the involved skewness is less than zero, one
first needs to consider the absolute value of the skewness and
determine the model parameters b, h, r and r, from which one
obtains the PDF and CDF, i.e., Eqs. (1) and (2). Then, through replac-
ing x by 2lX � x on the right-hand-side of Eq. (1) one obtains the
intended PDF of X. To obtain the intended CDF of X, one can replace
x by 2lX � x on the right-hand-side of Eq. (2) and the resulting
expression is subtracted from unity. The intended inverse CDF of
X with the negative skewness can be then derived from the
obtained CDF:
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and x = 2lX � h � b for p = 1/2.

Note that the SGLD has a support [b, +1) for the case that the
involved skewness is larger than zero and a support (�1, 2lX � b]
for the case that the involved skewness is less than zero.

3. Evaluation of the small first passage probabilities of a scalar
response process

The reliability analysis of a nonlinear structure under random
excitation often involves the evaluation of the small first passage
probabilities of a scalar response process within the reference time
T. Without loss of generality, in this study we consider the first pas-
sage probabilities of a component response process |Xk(t)| of the

J. He, J. Gong / Structural Safety 60 (2016) 28–36 29



Download English Version:

https://daneshyari.com/en/article/307442

Download Persian Version:

https://daneshyari.com/article/307442

Daneshyari.com

https://daneshyari.com/en/article/307442
https://daneshyari.com/article/307442
https://daneshyari.com

