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a b s t r a c t

Optimal allocation of monitoring efforts is necessary to cost-effectively obtain information to support the
management of civil infrastructure. To optimize the design of sensing networks, pre-posterior analysis of
the network can be conducted based on some metric for comparing alternative monitoring schemes. One
such metric is conditional entropy, an information theoretic measure of the uncertainty in a set of ran-
dom variables, conditioned on available sensor measurements. A second metric is the value of informa-
tion, a decision theoretic metric which explicitly quantifies the benefit of sensor measurements in
reducing the expected losses to a managing agent in the context of a decision-making problem under
uncertainty. In this paper, we present a scalable probabilistic framework to perform pre-posterior anal-
ysis in large infrastructure systems using either metric. A discussion is also provided concerning situa-
tions in which either metric should be preferred. To demonstrate this framework, an example
infrastructure monitoring problem related to seismic risk is presented and analyzed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Management and maintenance of civil infrastructure systems
relies on accurate and timely information about the states of the
various components which comprise them. Collection of this infor-
mation can be accomplished by routine inspections, investigations
of faults in the systems, or by continuous monitoring of the system
through the use of automated sensor networks. Novel sensor net-
works allow for an unprecedented quantity and quality of informa-
tion to be available to infrastructure managers, but also may be
costly and time-consuming to implement. Therefore, it is worth-
while to investigate the optimal deployment of these sensors, to
maximize the potential benefit of the information they would pro-
vide while minimizing the sensing costs.

At the individual infrastructure component level, optimal place-
ment of sensors for structural health monitoring (SHM) of bridges
or buildings has been investigated for determining the dynamic
characteristics of these structures [1–5]. At the infrastructure sys-
tem level, some investigations have been made into optimal sens-
ing in specific contexts, such as the placement of sensors for
contamination detection in water supply networks [6]. In general,
sensor placement is a combinatorial optimization problem, in

which some subset of objects (sensor locations) is selected from
a larger set (all possible locations) in order to optimize some
objective (e.g. maximizing sensor coverage or minimizing fault
detection time). Such problems can be computationally intensive,
and in many cases the only guarantee of finding an optimal
solution is to enumerate and compare all possible combinations,
which can be intractable in all but the simplest problems.
However, heuristics and approximations do exist to overcome this
problem [7].

In order to compute metrics for sensor placement, it is neces-
sary to conduct a pre-posterior analysis of proposed sensor net-
works, such that the potential impact of information gathered by
these networks can be predicted before the networks are imple-
mented. The use of pre-posterior analysis for optimal decision-
making in civil infrastructure is discussed in [8]. For this analysis
to be performed, it is first necessary to have a model defining the
possible observations of the sensor network. In this paper, we
make use of a Probabilistic Graphical Model (PGM) of the underly-
ing infrastructure system in order to conduct this pre-posterior
analysis. PGMs combine random variables, used to quantify the
epistemic and aleatory uncertainty in various parameters of the
system, with a graphical structure encoding the probabilistic or
deterministic relationships between these variables. PGMs
are often quite straightforward to interpret visually, and a large
variety of PGMs have been designed with the help of experts in
various fields to model the behavior of many systems of interest.
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Parameters of these models can be calibrated with the help of
expert knowledge, or trained from empirical data. For more infor-
mation on PGMs, the reader is referred to [9].

PGMs have been used to address issues of both sensor place-
ment and infrastructure management decision-making. In [7], a
Gaussian process PGM is used to optimize the placement of sensors
for measuring various distributed phenomena, such as tempera-
ture and rainfall. In [10,11], a Bayesian network PGM is used to
perform risk assessment and decision-making for infrastructure
under seismic risk. The basic scheme used to model infrastructure
systems under seismic risk in [11] is adapted and used in this
paper. The relevant parts of this model will be described in more
detail below. A similar model has been employed in [12].

In Section 2, a formal statement of the problem of optimal sen-
sor placement for infrastructure monitoring is presented. In Sec-
tion 3, the conditional entropy metric is presented. This general
metric has been used for guiding optimal sensor placement in
many domains where reducing uncertainty is the sensing goal. In
Section 4, an alternative metric, the value of information, is also
presented. This metric is defined in the context of decision-
making problems, and can be used to guide optimal sensor place-
ments for supporting this decision-making. We propose a general
method for computing and optimizing these metrics in Section 5.
In Section 6, a scheme for representing infrastructure systems
and conducting inference using multivariate Gaussian models is
developed. In Section 7, we describe the application of these met-
rics and models to infrastructure systems subjected to seismic
risks. The use of these metrics for optimizing sensor placement is
demonstrated in Section 8 for an example application involving a
network of bridges and tunnels in the San Francisco Bay area. Fur-
ther investigations into the densities of these metrics over the seis-
mic risk scenarios are presented in Section 9, before drawing
conclusions in Section 10.

2. Problem statement

Consider an infrastructure system consisting of n components.
These components are subjected to a risk scenario s 2 S, referring
to a specific type of loading placed upon the system, e.g. an earth-
quake, where S is the domain of possible risk scenarios. A set of
variables W ¼ fW1; . . . ;Wng describes all components within the
system, where variable Wi, describing component i, can be multi-
dimensional, so as to incorporate all relevant features which char-
acterize the component. In the context of spatially distributed
infrastructure systems,W refers to any set of structural component
properties, as well as external factors such as the loads or
demands, to which these components are subjected. In this paper,
we restrict ourselves to considering scalar quantities, e.g. the max-
imum loads on a structure due to an extreme event (as is consid-
ered in the example presented in Sections 7 and 8).

Some deterministic function of features W defines the states of
the components, in terms of their behavior or functionality. We
assume that the state of each component is binary, i.e., the compo-
nent can either be in an ‘‘operational” or ‘‘failed” state. We describe
with binary variable Xi the state of component i, and denote by X
the set of X1; . . . ;Xn, the joint states of all components in the
system.

Through inspections or sensor measurements, we may observe
some subset of the features W. We denote by X the set of all such
possible observations, with X ¼ fX1; . . . ;Xng, where Xi denotes all
possible observations of features related to component i. These
observations are potentially noisy or indirect measures of the fea-
tures in W. Note that we assume that variables within X cannot be
observed directly (unless perfect measurements are made of all
features of the component relevant to determining its state); this

assumption is made to avoid computational difficulties within
the framework presented here, as discussed in Section 6. Sensor
placement involves the selection of some set Y of variables to
observe, where Y ¼ fY1; . . . ;Yng with Yi #Xi. Note that Yi may be
an empty set if no features relating to component i are selected
for observation by sensors. This formulation can also easily be gen-
eralized to include the possibility of collecting measurements
where no components are located by introducing ‘‘pseudo-compo
nents” endowed with observable features but whose states are
already known with certainty, e.g. ‘‘operational”.

Fig. 1 shows a general PGM for a system as outlined above. The
representation follows a common convention, with circles indicat-
ing random variables and arrows or lines indicating the depen-
dence structure among these variables. Shaded circles indicate
observed variables [9]. As reported in the figure, we assume that,
although a priori the scenario S is uncertain, when a scenario
occurs, it can be directly identified. Therefore, we assume that sen-
sor placement is performed under uncertainty on S, however, pro-
cessing of data collected by sensors in the aftermath of the scenario
will be conditioned upon knowledge of S. This is a reasonable
assumption in certain domains, such as seismic risk, where earth-
quake scenario information (the epicenter location and magnitude)
are usually determined with a high degree of accuracy in the after-
math of the scenario.

Within this PGM, the problem of optimal sensor placement can
be formalized as follows:

Y� ¼ argmaxY #XmXðYÞ subject to CðYÞ 6 B ð1Þ
where Y� is the optimal set of sensed variables, CðYÞ is the cost of
implementing a sensing network to measure Y;B is a fixed budget
constraint, and mXðYÞ is a metric which quantifies how observing
Y will improve knowledge of the state X of the components in the
system. Note that, while W gives a full description of the system,
we seek to place sensors to optimally gain knowledge about X,
rather than W, since performance of the components, captured in
X, is the true information of interest in managing the system.

We model the uncertain scenario s 2 S through distribution
pðSÞ. If mXjsðYÞ is our sensor placement metric, computed under a
specified scenario s, then we can compute an expected value of
mXjsðYÞ over pðSÞ to obtain the metric value mXðYÞ across all risk
scenarios:

mXðYÞ ¼ ES mXjsðYÞ
� � ¼ Z

s
mXjsðYÞpðSÞds ð2Þ

where ES �½ � indicates the statistical expectation under the probabil-
ity distribution pðSÞ of S.

In this paper, we discuss two ways to define the metric mXjsðYÞ:
conditional entropy and the value of information. The conditional
entropy metric, as presented in Section 3, addresses the problem

Fig. 1. A general probabilistic graphical model for a partially observable system
with n components. Variable S describes the risk scenario. Variable Wi describes
component i, binary variable Xi gives its state, and variable Yi is a selected
measurement of observable features for this component.
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