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a b s t r a c t

Accurate prediction of failure probability of a given structural system subjected to parametric uncertainty
often leads to a computationally challenging process requiring considerable amount of time. To overcome
this issue, it is advantageous to develop non-intrusive model, that approximates the system response and
perform all subsequent operations on the developed model. This paper presents a novel non-intrusive
algorithm, referred to as polynomial correlated function expansion (PCFE), for high-fidelity reliability
analysis. The proposed method expresses the output in a hierarchical order of component functions
which facilitate (i) expressing the component functions in term of extended bases, (ii) determination
of actual responses at quasi-random sample points, (iii) determination of the unknown coefficients
associated with the bases by employing homotopy algorithm and (iv) Monte Carlo simulation. PCFE
decouples the stochastic computations and finite element (FE) computations, and consecutively the FE
code can be treated as a black box, as in the case of a commercial software. Six numerical problems,
involving explicit performance functions and real-life problems described by implicit limit-state
functions, have been solved to illustrate the performance of the proposed approach. It is observed that
PCFE outperforms the existing approaches.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The main aim of reliability analysis is the computation of failure
probability. Theoretically, this can be easily accomplished by
solving a multivariate integral in domains described by failure
modes. However in reality, the difficulty arises due to the implicit
nature of the limit-state functions. Thus, a detailed finite element
modelling of the structure in combination with reliability analysis
becomes evident. Even for problems defined by explicit limit-state
functions, evaluation of failure probability may be challenging
either due to the highly non-linear nature of the limit-state
function or due to the irregularities in the problem domain.

The most elegant and widely accepted approach for evaluating
failure probability is Monte Carlo simulation (MCS) [1,2]. The foun-
dation of this method is based on an algorithm for generating ran-
dom numbers. Failure probability is obtained, within a predefined
confidence bound, by carrying out large number of simulations at
randomly generated sample points and counting the number of
responses exceeding threshold limit. A number of modifications

to this algorithm, such as directional simulation [3–6], importance
sampling (IS) [7–11], subset simulation [12–14] etc., have also
been proposed by various researchers. All these approaches are
based on the sampling algorithm and therefore, can be categorised
as sampling approach (SA). However, SA is computationally
burdensome and often becomes impracticable for complex
systems having low failure probability.

A totally distinct approach to that discussed above is the non-
sampling approach (NSA). Within the framework of this method,
one first identify the point, often known as design point or most
probable point (MPP), on the limit-state function that is nearest
to the origin in the standard normal space. Once the design point
has been identified, the limit-state function close to design point
is approximated with a truncated Taylor’s series expansion. If first
order Taylor’s series expansion is used to approximate the limit-
state function, then the procedure is known as first order reliability
method (FORM) [15,16]. Similarly, if a second order Taylor’s series
is used, it is called second order reliability method (SORM) [17–19].
Once the approximate limit-state function near MPP is obtained,
the failure probability is obtained by computing the integral of
the approximated function by asymptotic methods. Although this
method yields accurate result for weakly non-linear problems
[20,21], its accuracy for highly non-linear problem is still
questionable. Moreover, when the gradients of the limit-state
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function are unknown, both FORM and SORM becomes computa-
tionally burdensome.

Response surface method (RSM) [22–26] is another approach
for determining failure probability. This method, in a sense, is a
combination of SA and NSA. Initially, one has to determine the
responses at some pre-selected sample points in the design
space. This step is known as design of experiments (DOE)
[27–29]. Once the responses at pre-selected sample points are
obtained, an approximate limit-state function is formulated. This
approximate limit-state function is the backbone of RSM and
often known as surrogate model. It is a well-known fact that
the construction of surrogate model is the most crucial step in
this procedure. Surrogate models that are popular among
researchers for reliability analysis includes but are not limited
to high order stochastic response surface method (HO-SRSM)
[30], kriging [31–33], polynomial chaos expansion (PCE)
[34,35], high dimensional model representation [36–38] and
moving least square [39,40].

This paper presents a new surrogate modelling technique,
referred to as polynomial correlated function expansion (PCFE),
for reliability analysis. Compared to the conventional surrogate
models, the proposed approach has several advantages. Firstly,
the proposed approach reduces the number of actual function eval-
uations significantly, making the process computationally efficient.
Secondly, PCFE is optimal in Fourier sense. This is because the
unknown coefficients associated with the bases are determined
by considering the hierarchical orthogonality of the component
functions. Furthermore, it is mean-square convergent series as it
minimizes the mean square error from truncation after a finite
number of cooperative terms. Finally, it is capable of dealing with
both correlated and uncorrelated variables without the need for
any ad hoc transformations. Although, the proposed method can
be invariantly used with both uniformly and non-uniformly dis-
tributed sample points, quasi-random sample points have been
used in this paper. Out of various available techniques for generat-
ing quasi-random sequence, such as Halton sequence [41], Sobol’s
sequence [42,43] and Faure sequence [44], Sobol’s sequence has
been used due to its high convergence rate [45].

The paper is organised as follow. After a brief discussion about
the use of surrogate modelling in reliability analysis in Section 2,
details of the proposed approach is presented in Section 3. Section 4
illustrates the performance of the proposed method in reliability
analysis with six problems. Finally, the summary and conclusion
of the paper is discussed in Section 5.

2. Surrogate modelling in reliability analysis

Let x ¼ x1; x2; . . . ; xNf g be a N dimensional vector representing
the random variables associated with a system and defined in
the probability space X;F ;Pð Þ where, X! RN . If g xð Þ represents
the limit-state function such that g xð ÞP 0 denotes the safe region
and g xð Þ < 0 is the failure zone, probability of failure Pf is defined
as

Pf ¼
Z
g xð Þ<0

f xð Þdx ð1Þ

where, f xð Þ denotes the joint probability distribution of x. From
Eq. (1), it is evident that knowledge of g xð Þ is essential for determina-
tion of Pf . However, explicit form for the limit-state function g xð Þ is
often unknown for practical problems. In surrogate modelling, we
generate an approximate limit-state function ĝ xð Þ based on actual
responses at selected sample points and by minimizing the error
between the actual and approximate model in some statistical
sense. Thus, failure probability PSM

f in surrogate modelling approach
is defined as

PSM
f ¼

Z
ĝ xð Þ<0

f xð Þdx ð2Þ

It is apparent that construction of ĝ xð Þ is of vast importance in
surrogate modelling for accurate prediction of failure probability
Pf . Once ĝ xð Þ is obtained, Pf may be obtained by performing
FORM/SORM/IS/MCS on the explicit form of ĝ xð Þ.

3. Polynomial correlated function expansion (PCFE)

Let, x ¼ x1; x2; . . . ; xNf g be an N dimensional vector, representing
the input variables of a structural system. It is quite logical to
express the output response g xð Þ as a finite series as [46,47,49–51]

g xð Þ ¼ g0 þ
XN
k¼1

XN
i1<i2<���<ik

gi1 i2 ...ik
xi1 ; xi2 ; . . . ; xik
� � ð3Þ

where, g0 is constant and represents the mean response.
Suppose, two subspace R and B in Hilbert space is spanned by

basis r1; r2; . . . ; rlf g and b1; b2; . . . ; bmf g respectively. Now if, (i)
B � R and (ii) B ¼ R� R? where, R? is the orthogonal complement
subspace of R in B, we term B as extended basis and R as non-
extended basis [48]. Now if w represents polynomial basis for x,
Eq. (3) can be rewritten, in terms of extended bases, as

g xð Þ¼ g0

þ
XN
k¼1

X
i1<i2<���<ik

Xk
r¼1

X
m1

X
m2

� � �
X
mr

aði1 i2 ���ikÞirm1m2 ���mr
wi1

m1
xi1
� �

wi2
m2

xi2
� � � � �wir

mr
xirð Þ

 ! !

ð4Þ
where, a denote unknown coefficients associated with the bases.
Eq. (4) represents the basic form of PCFE.

Definition 1. The terms in Eq. (4) reflecting independent effect
only are termed as first-order component function and denoted as
gi xið Þ. Similarly, the terms reflecting bivariate effect are termed as
second-order component function and denoted by gij xi; xj

� �
. The

constant g0 is termed as zeroth order component function, and can
be treated as average response at all the selected sample points.

Definition 2. The expression obtained by substituting N ¼ S in
Eq. (4) is termed as Sth order PCFE expression. An Sth order PCFE
consists of all the component functions up to Sth order, i.e., while
first-order PCFE consists zeroth and first order component
functions, a second-order PCFE consists zeroth, first and second
order component functions. Therefore, adding all the Sth order
component functions to an existing S� 1ð Þth order PCFE would
yield the Sth order PCFE expression.

3.1. Solution strategy

An essential condition, associated with Eq. (4), is the hierarchi-
cal orthogonality of the component functions. This require a higher
order component function to be orthogonal with all the lower
order component functions. To determine the unknown coeffi-
cients a while satisfying the orthogonality criteria, a homotopy
algorithm [52–54] is employed.

Rewriting Eq. (4) in matrix form

Wa ¼ d ð5Þ
where, W and a consists of the basis functions and unknown coeffi-

cients respectively. If g ¼ g1; g2; . . . ; gNs

� �T be the observed

responses at Ns set of sample points and �g ¼ g0; g0; . . . ; g0f gT be
the mean response vector, then d ¼ g� �g. Pre-multiplying Eq. (5)
by WT , we obtain
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