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a b s t r a c t

The determination of the peak factor is quite cumbersome in the case of a non-stationary process, due to
the necessity of calculating the non-geometric spectral moments of the process and obtaining the thresh-
old level of the first-passage problem corresponding to a certain non-exceedance probability value. In this
paper, an efficient approximate new method is presented for practical applications in Earthquake
Engineering. The so-called Equivalent Oscillator and Response method consists of transforming the orig-
inal oscillator excited by a uniformly modulated non-stationary colored noise into an equivalent oscilla-
tor excited by a uniformly modulated non-stationary white noise, in such a way that the responses of
both oscillators have similar values for the spectral parameters that affect the calculation of the peak fac-
tor. A new dimensionless spectral peakedness factor is introduced in order to ensure the matching of the
spectral bandwidth of both oscillators. A numerical application of the new method, based on a non-
stationary seismological model for the ground accelerations process, is carried out, showing the reliability
and robustness of the new method for efficiently and accurately estimating the peak factor of the non-
stationary structural response.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, the estimation of the peak factor has been a
very active research field in Engineering Seismology due to the
growing interest in performance-based earthquake resistant
design [1]. In fact, several methods of estimating the maximum
value of non-stationary stochastic processes have been developed
in the context of Random Vibration Theory [2–5]. The computation
of the maximum response is relatively easy if the oscillator
response is considered as a stationary process, because explicit
expressions can be derived for the peak factor. However, if the
oscillator response is assumed to be non-stationary, computing
the maximum response becomes a lengthy procedure, especially
due to the following issues: several convolution products must
be carried out to determine the spectral moments of the structural
response process, and a non-linear integral equation must be
solved to evaluate the maximum response. This paper proposes
an efficient approximate method—called Equivalent Oscillator
Response method—of estimating the peak structural response of
a linear SDOF structural system subjected to a non-stationary

ground motion, that eliminates the shortcomings indicated above
and reduces drastically the calculation time. The basis of the
stochastic processes and Random Vibration Theory are briefly
introduced in order to present the notation and to clarify the
hypotheses used in the method. Later on, the newmethod is devel-
oped and applied in a numerical analysis based on a ground seis-
mological model.

2. Structural response

2.1. Stochastic excitation process

Let fagðtÞg be a non-stationary stochastic process representing
the ground accelerations produced by an earthquake at a specific
location over time. A zero-mean ground accelerations process will
be assumed hereafter without loss of generality. In this paper, the
evolutionary spectral representation proposed by Priestley [6] with
a frequency-independent modulation of the acceleration ampli-
tudes is assumed, commonly known as uniformly modulated pro-
cess. Both hypotheses are very usual in Earthquake Engineering.
Then, the realizations of the stochastic process fagðtÞg can be
expressed as:

agðtÞ ¼ Iag;us;agðtÞag;usðtÞ ð1Þ
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where Iag;us;agðtÞ is a deterministic intensity function with a slow
variation over time, and ag;usðtÞ are the realizations of the underly-
ing stationary process fag;usðtÞg which has a spectral representation
of the form:

ag;usðtÞ ¼
Z 1

�1
ej2pftdeZag;usðf Þ ð2Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit, f is the cyclic frequency, the

tilde over a function is used to highlight the fact that the function

is complex-valued and feZag;usðf Þg is a complex-valued stationary
random process with orthogonal increments, i.e.,

E deZ�
ag;usðf kÞdeZag;usðf lÞ

h i
¼ Gag;usðf kÞdðf k � f lÞdfk dfl, being E �½ � an

operator that gives the mathematical expectation of the argument,
the superscript ‘‘⁄” means complex conjugate, dð�Þ is the Dirac delta
function, and Gag;usðf Þ is the two-sided variance spectral density
function. Note that the subscript ‘‘ag;us; ag” in the intensity func-
tion is used to denote that this function transforms ag;usðtÞ into agðtÞ.

2.2. Stochastic response process

The displacement dðtÞ of a viscously damped linear time-
invariant SDOF oscillator, of natural cyclic frequency f n, excited
by a time series of ground accelerations agðtÞ and with null initial

conditions—i.e., dðtÞ ¼ 0; _dðtÞ ¼ 0—is given by replacing Eqs. (1)
and (2) into the Duhamel integral. Then, the realizations of fdðtÞg
can be computed as follows:

dðtÞ ¼
Z 1

�1
eIag;us;dðf ; tÞ ej2pftdeZag;usðf Þ ð3Þ

where eIag;us;dðf ; tÞ is a complex-valued intensity function whose
expression is the following:

eIag;us;dðf ; tÞ ¼ Z 1

�1
hag;dðsÞ Iag;us;agðt � sÞ e�j2pfsds ð4Þ

where hag;dðtÞ is the impulse response function of the oscillator,
which has the following expression:

hag;dðtÞ ¼ � 1
2pf d

e�n2pf nt sinð2pf dtÞ for t P 0 ð5Þ

where n is the damping ratio and f d is the damped cyclic frequency.
Note that the subscript ‘‘ag;d” in the impulse response function is
used to denote that this function transforms agðtÞ into dðtÞ. In the
frequency domain, the impulse response function becomes the well
known transfer function of the viscously damped oscillator:

eHag;dðf Þ ¼ � 1

2pf nð Þ2
1

1� b2� �þ j2nb
ð6Þ

where b is the frequency ratio, given by b ¼ f=f n.
Taking into consideration that Iag;us;agðtÞ is an intensity function,

then eIag;us;dðf ; tÞ—which is the convolution of eIag;us;agðf ; tÞ and a pha-
sor with modulus equal to the impulse response function of the fil-
ter—will also have a slow variation over time, so that it can also be
considered as an intensity function. Hence, if the seismic action
fagðtÞg is modeled by an evolutionary stochastic process, it can
be stated that the oscillator response process fdðtÞg is also evolu-
tionary, and is modulated by the intensity function defined in Eq.
(4). It should be emphasized that this intensity function operates
on the underlying stationary process of the ground accelerations,
fag;usðtÞg, and not on the underlying stationary process of the dis-
placements response, fdusðtÞg.

2.3. Variance and cross-correlation coefficient of the response process

The peak factor of a non-stationary process is directly expressed
in terms of the following four functions: the variance functions of
the displacements and velocities of the response process—i.e., r2

dðtÞ
and r2

v ðtÞ—; the normalized zero-time lag cross-covariance func-
tion between the displacements and velocities of the response pro-
cess—i.e., j2

dv ðtÞ—, also known as cross-correlation coefficient; and
the spectral bandwidth function of the displacements of the
response process—i.e., qdðtÞ—. According to the developments car-
ried out by Michaelov et al. [3,4], these functions can be computed
as follows:

r2
dðtÞ ¼ m0;0ð ÞdðtÞ j2

dvðtÞ ¼ � Im ~m0;1ð ÞdðtÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0;0ð ÞdðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1;1ð ÞdðtÞ

p
r2
vðtÞ ¼ ð2pÞ2 m1;1ð ÞdðtÞ qdðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Re2 ½ ~m0;1ð ÞdðtÞ�

m0;0ð ÞdðtÞ m1;1ð ÞdðtÞ
r ð7Þ

where ðm0;0ÞdðtÞ, ðm1;1ÞdðtÞ and ð ~m0;1ÞdðtÞ are the spectral moments
of order (0,0), (1,1) and (0,1), respectively, and Re �½ � and Im �½ � are
operators that give the real and the imaginary part of the argument,
respectively. It must be noted that the spectral moments used here
are calculated from the variance spectrum of the response process
in terms of the cyclic frequency, and not of the circular frequency.

Two approaches for the definition of the spectral moments can
be found in the scientific literature: the geometric approach pro-
posed by Vanmarcke [7], and the non-geometric one introduced
by Di Paola [8]. The non-geometric definition of non-stationary
spectral moments will be used in the present paper. Michaelov
et al. [3,4] make a comprehensive review of this approach, and
apply it to the calculation of non-geometric spectral moments—
also known as spectral characteristics—of evolutionary processes,
obtaining the following expressions:

m0;0ð ÞdðtÞ ¼ 2
R1
0 Ið0Þag;us;dðf ; tÞ

h i2
Gag;usðf Þdf

m1;1ð ÞdðtÞ ¼ 2
ð2pÞ2

R1
0 Ið1Þag;us;dðf ; tÞ

h i2
Gag;usðf Þdf

~m0;1ð ÞdðtÞ ¼ � 2j
2p

R1
0
eIð0Þ�ag;us;dðf ; tÞeIð1Þag;us;dðf ; tÞGag;usðf Þdf

ð8Þ

where eIðkÞag;us;d has the following recursive expression:

eIðkÞag;us;dðf ; tÞ ¼
@eIðk�1Þ

ag;us;dðf ; tÞ
@t

þ j2pfeIðk�1Þ
ag;us;dðf ; tÞ ð9Þ

Note that for the stationary case—eIð0Þag;us;dðf ; tÞ ¼ 18t—the spectral
moments ðmk;lÞdðtÞ of Eq. (8) become ðmkþlÞd. The computation of
the spectral moments of the response process from Eq. (8) is a very
time-consuming procedure due to the calculation of the complex-

valued intensity function eIð0Þag;us;dðf ; tÞ, that requires making a time
convolution product for each frequency f and for each time t,

according to Eq. (4). The function eIð1Þag;us;dðf ; tÞ is then obtained with
Eq. (9). For instance, in the case of a uniformly modulated input
process, if the variance spectrum Gag;usðf Þ is defined with a sam-
pling frequency interval Df ¼ 0:02 Hz up to a frequency of 20 Hz,
and the frequency-independent intensity function Iag;us;agðtÞ is
defined with a sampling time interval of Dt ¼ 0:01 s up to a time
of 25 s, then a total number of 1000 � 2500 convolution products

have to be calculated to obtain eIag;us;dðf ; tÞ as a discrete function
represented by a 1000x2500 matrix.

If the underlying stationary process of the ground motion
fag;usðtÞg is a white noise process fwusðtÞg, then the two-sided
variance spectrum is a constant value Gw;us. In this case, Eq. (8)
transforms into the following expressions derived by Michaelov
et al. [4]:

I. Ferrer, C.R. Sánchez-Carratalá / Structural Safety 59 (2016) 32–41 33



Download English Version:

https://daneshyari.com/en/article/307461

Download Persian Version:

https://daneshyari.com/article/307461

Daneshyari.com

https://daneshyari.com/en/article/307461
https://daneshyari.com/article/307461
https://daneshyari.com

