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ABSTRACT

Considering the issue of estimating small probabilities p, i.e. measuring a rare domain F = {x|g(X) > q}
with respect to the distribution of a random vector X, Multilevel Splitting strategies (also called Subset
Simulation) aim at writing F as an intersection of less rare events (nested subsets) such that their measures
are conditionally easily computable. However the definition of an appropriate sequence of nested subsets
remains an open issue.

We introduce here a new approach to Multilevel Splitting methods in terms of a move of particles in
the input space. This allows us to derive two main results: (1) the number of samples required to get
a realisation of X in F is drastically reduced, following a Poisson law with parameter log 1/p (to be com-
pared with a Geometric law with parameter p for naive Monte-Carlo); and (2) we get a parallel optimal
Multilevel Splitting algorithm where there is indeed no subset to define any more.

We also apply result (1) in quantile estimation producing a new parallel algorithm and derive a new
strategy for the construction of first Design of Experiments in meta-model based algorithms.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Context. Extreme events simulation and quantification come
from the need to insure that undesirable events will not appear.
Typically such events are failure of industrial critical systems, i.e.
systems for which failure is regarded as a massive catastrophic sit-
uation, found in sectors like nuclear safety, aerospace, etc. In this
context one could either want to estimate a probability of failure
or to define a threshold to insure security with a given confidence.
Usually the system is a “black box” whose output determines
safety/failure domains.

Formally, let X be a random vector with values in R? and g be a
measurable function from R? to R defining the failure domain
F = {x € RY|g(x) > q}, we seek to measure F with respect to the
distribution of X : PX € F] = u*(F) = p or to find back q given p.

Two reasons why this calculation is not obvious is the order of
magnitude of the probability (say p < 10~*) and the computational
time of g output, from couples of hours to several months. In
this framework efficiency of the algorithm (precision, global
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computational time) with respect to good statistical properties of
the estimator are of great interest.

Let us first introduce several techniques used so far. Then we
will present our new algorithm and its applications in probability
and quantile estimation.

Modified Monte-Carlo algorithms. A comprehensive review of
Monte-Carlo methods can be found in [1]. On the one hand
Importance Sampling [2,3] modifies the distribution of X to lower
the variance of the naive Monte-Carlo estimator; unfortunately the
search for an appropriate change of probability is not obvious. In
particular it is known that the optimal change depends on the
quantity of interest and is thus not directly available.

On the other hand Multilevel Splitting methods consider the
failure domain as a finite intersection of nested subsets for which
conditional probabilities are not too small and so more easily com-
putable: let (F;), be a finite sequence of nested subsets (Fo = R?)

such that F = N Fy, one can write:
k

Plg(X) > q] = p*(F) = [ [#* (FlFi)
k

In these algorithms the two mains issues are the conditional sam-
pling and the subsets definition. The idea of splitting an event
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F = {g(X) > g} with a sequence of (q,,),, such as F can be written as
an intersection of nested subsets appeared in the mid 1950’s (from
Kahn & Harris [4] and Rosenbluth & Rosenbluth [5]). Then Au&Beck
[6] brought it to rare event estimation. An in-depth review of these
techniques can be found in Glasserman et al. [7]. This algorithm was
further improved by Cérou et al. [8] linking it with Feynman-Kac
formulae and Céou and Guyader [9] who proposed a method to
adaptively select the conditional probabilities. Concerning the con-
ditional simulations, Del Moral et al. [10] introduced reversible
transition kernels. Finally Cérou et al. [11] showed that these algo-
rithms were optimal when all conditional probabilities were equal
and that an adaptive choice of levels leads to bias in the estimators.
Recently Guyader et al. [12] proposed a limit case where the condi-
tional probabilities are fixed to 1 —1/N, given N the size of the
working population. While they showed that this choice is optimal
in terms of computational efficiency, it also disables parallel
computation possibility and eventually makes this algorithm longer
in practice if multicore computers are available.

Some others practical sampling strategies such as Line Sampling
(LS) reduce the problem to the measure of a one-dimensional fail-
ure domain [13]. However it is well-known that this methodology
performs well only for linear of weakly nonlinear systems [14] and
that general methods such as Multilevel Splitting are still required
in some strongly nonlinear problems [15].

Meta-model based algorithms. As modified Monte-Carlo methods
seen above still require an important number of samples and do
not always allow for full parallelisation, meta-model based algo-
rithms propose to spend the computational budget in fitting a sur-
rogate model to the expensive-to-evaluate function g and then to
use it instead of the true function to compute probability estima-
tion with usual methods [16-18]. Thus theses strategies highly
depend on the quality of the Design of Experiments (DoE) and espe-
cially on their ability to predict the boundary between safety and
failure domains, i.e. to explore the input space close to the bound-
ary. While space-filling strategies recommend to sample uniformly
in the input space (see [19] or [18] chapter 2 for a review of these
methods) and thus depend a lot on the dimension of the input
space, DoE generated according to the distribution of X are unlikely
to visit the failure domain because of the order of magnitude of the
failure probability.

Effective computing time. As mentioned previously, the function
of interest g is assumed to be highly demanding in computational
time and the number of calls to g, i.e. the number of samples used
for an estimator, is limited. In this context parallel algorithms (see
for examples reference books [20] or [21]) are of great interest.
Basically they allow for generating samples for an estimator in a
parallel way, i.e. that one can get as many samples as available
“computers” for the time of one. Thus, to increase the precision
of an estimator one can simply use more computers, i.e. multi-core
processors, to get more samples without making the estimation
longer. We will refer to the number of calls to the limit-state func-
tion made by one computer as the effective computing time of an
algorithm.

Main results. We introduce here a new approach to Multilevel
Splitting in terms of a move of particles from an initial random
state to the failure domain. This approach brings two main results:
first the number of samples needed to get a realisation of X in the
failure domain follows a Poisson law with parameter log 1/p, this is
to be compared with a classical Geometric law with parameter p
for naive Monte-Carlo; then we get the full parallelisation of the
optimal sequential algorithm described by Guyader et al. [12],
which turns it into the best Multilevel Splitting algorithm in terms
of effective computing time, resolving the issues of choosing a
sequence of (q,,),, or selecting a cut-off probability for the adaptive
construction. This new point of view also allows us to propose a

modified version of Guyader et al. quantile estimator with a
reduced bias and parallel computation.

In the context of meta-model based algorithms (that require
DoE with points close to the boundary between safety and failure
domains), we use this approach to get a first DoE embedding failing
samples while limiting drastically the number of calls to the limit-
state function, which depends linearly on the dimension:

NDDE =d+1+ Nfail IOg(l/P)

with Npe the size of the first DoE, d the dimension of the input
space and Ng,; the final number of points in the failure domain.

2. Getting into the failure domain
2.1. Introduction

The idea of trying to go as fast as possible into the failure
domain comes from the need to get failing samples in several
methods, from Importance Sampling [22] to meta-model based
algorithms. In this latter case it is well noticed [16] that without
a first DoE embedding failing samples, the learning of the failure
domain is complicated and the final probability estimator rather
poor. On the other hand it was tried to merge Multilevel
Splitting methods and meta-model based algorithms to increase
the precision of conditional probabilities estimation while making
easier the learning of the failure domain [17,23]. The paradox was
that the final DoE was indeed far too dense in a posteriori useless
regions.

Then we came up with the idea of stopping to try computing the
probability estimation on-the-go but only keeping the moving part
of these algorithms. Finally, Guyader et al. work [12] brings to us
the theoretical framework to derive this algorithm.

The problem can be defined as follows: let X be a random vari-
able with values in R?,d € N*, X its distribution and g a measur-
able function from R? to R such that the cdf of g(X) is continuous.

We first introduce the algorithm in the ideal case, i.e. the case
where we know how to sample from any distribution when
required, and we will then present two implementations to be
used depending on the goal (probability and quantile estimation
or building of first DoE).

2.2. Ideal case

In this section we consider that it is possible to sample from any
distribution when required; thus it is said ideal.

2.2.1. Move of one particle

Algorithm 1. Move of one particle.

o= —oo;m=0

loop
Sample X ~ u*(-|g > q,,)
Evaluate g : g, 1 = g(X)
m=m-+1

end loop

Thus, Algorithm 1 can be seen as a move of a particle from an
initial random place along the levels of g and the sequence of
(@m),, has indeed an interesting statistical behaviour. Let F, be
the cdf of g(X) and A the integrated hazard function:
A(y) = —log(1 — F¢(y)); the following results are based on [12]:
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