
Parameter sensitivity of system reliability using sequential
compounding method

Junho Chun a, Junho Song b,⇑, Glaucio H. Paulino a,c,1

a Dept. of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801, United States
b Dept. of Civil and Environmental Engineering, Seoul National University, Seoul 151-742, South Korea
c School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, Atlanta, GA 30332, United States

a r t i c l e i n f o

Article history:
Received 23 September 2014
Received in revised form 8 February 2015
Accepted 9 February 2015
Available online 20 March 2015

Keywords:
First-passage probability
Parameter sensitivity
System reliability
Reliability based design optimization
Sequential compounding method

a b s t r a c t

Computation of sensitivities of the ‘system’ failure probability with respect to various parameters is
essential in reliability based design optimization (RBDO) and uncertainty/risk management of a complex
engineering system. The system failure event is defined as a logical function of multiple component
events representing failure modes, locations or time points. Recently, the sequential compounding
method (SCM) was developed for efficient calculations of the probabilities of large-size, general system
events for a wide range of correlation properties. To facilitate the use of SCM in RBDO and uncer-
tainty/risk management under a constraint on the system failure probability, a method, termed as
Chun–Song–Paulino (CSP) method, is developed in this paper to compute parameter sensitivities of
system failure probability using SCM. For a parallel or series system, the derivative of the system failure
probability with respect to the reliability index is analytically derived at the last step of the sequential
compounding. For a general system, the sensitivity of the probability of the set involving the component
of interest and the sensitivity of the system failure probability with respect to the super-component
representing the set are computed respectively using the CSP method and combined by the chain-rule.
The CSP method is illustrated by numerical examples, and successfully tested by examples covering a
wide range of system event types, reliability indices, number of components, and correlation properties.
The method is also applied to compute the sensitivity of the first-passage probability of a building struc-
ture under stochastic excitations, modeled by use of finite elements.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sensitivity analysis is an important part of determining impacts
of input variables on the function, system or performance output.
Such an analysis not only provides quantitative measures that help
identify relative importance of variables in terms of their impact on
the results, but also facilitate the use of gradient-based optimizers
in efforts to optimize the system. In risk-based decision making
processes to improve or optimize a system subjected to significant
uncertainties, it is essential to identify relative contributions of
various input random variables in terms of parameter sensitivities
of the failure probability. To this end, various sensitivity-based
importance measures have been developed. Such measures quan-
tify relative importance of random variables in terms of the

difference in the failure probability caused by the changes in the
distribution parameters proportional to the standard deviations
or those made possible by the fixed upgrade cost [1,2].

The recent emergence of research in reliability based design
optimization (RBDO) [3–8] also demands calculating parameter
sensitivity of the failure probability. In fact, RBDO aims to find
the values of design variables that maximize or minimize a given
objective function describing the performance of the system while
satisfying probabilistic constraints. A typical RBDO formulation is

min
d

f objðdÞ

s:t: PðEi; dÞ 6 Ptarget
i ; i ¼ 1; . . . ;nc

dlower
6 d 6 dupper

ð1Þ

where f obj(d) is the objective function of a given design optimiza-
tion problem, e.g., volume, total cost and performance measure,
d ¼ fd1; . . . ; dng is the set of the design variables with the lower

bounds dlower and the upper bounds dupper (box constraints), and
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Ei and Ptarget
i respectively denote the event that the i-th constraint is

violated, i ¼ 1; . . . ;nc (or the i-th failure event), and the correspond-
ing target failure probability. Sensitivity analysis of the probabilistic
constraints with respect to design variables is a crucial part of the
reliability based design optimization especially when a gradient-
based optimization algorithm needs to be utilized.

In the aforementioned situations of RBDO, if the failure event is
described as a system event Esys, i.e., a logical function of multiple
component events representing failure modes, locations or time
points, parameter sensitivities of the system failure probability
are needed. Among various examples of system failure events
[9,10], let us consider the first passage probability of a structure
subject to stochastic excitations [11–15]. This is the probability
that a stochastic response XðtÞ exceeds a given threshold x0 at least
once for a given duration t 2 ð0; tn�. This is commonly utilized to
find the probability of the failure event described within a time
interval. One of the available approaches for formulating the first
passage probability consists of defining the problem as a series sys-
tem problem [13], i.e.,

PðEsysÞ ¼ Pðx0 < max
0<t6tn

jXðtÞjÞ ¼ P
[n
i¼1

XðtiÞj j > x0

 !
ð2Þ

where ti is the i-th discretized time point, i = 1,. . .,n. The first pas-
sage probability defined in Eq. (2) requires evaluation of the compo-
nent failure probability at each time point and the statistical
dependence between the failures at different time points. If a proba-
bilistic constraint is associated with the first passage probability in
RBDO [15], an efficient, reliable and robust algorithm is required to
compute the system failure probability during the iterative proce-
dure in RBDO.

In general, the sensitivity of the system failure probability with
respect to a parameter h is obtained by a chain rule, i.e.,

@PðEsysÞ
@h

¼
Xn

i¼1

@PðEsysÞ
@bi

� @bi

@h
ð3Þ

where bi is the reliability index of the i-th component failure event.
It is noted that the impact of the correlation between component
failure events on the partial derivative is assumed to be negligible.
From Eq. (3), the partial derivatives of the component reliability
index with respect to the design variables are available from
parameter sensitivities of component reliability analysis [1,16].
However, the derivative of the system failure probability with
respect to the reliability index has not yet been clearly addressed
in the literature. Several methods have been developed to compute
parameter sensitivities of the system failure probability. Song and
Kang [10] used the Matrix-based System Reliability method [17]
for computing parameter sensitivities for systems under statistical
dependence, and later the method was further developed [18]. In
[10] and [18], the sensitivity of the system failure probability was
computed with respect to the mean and the standard deviation of
the input random variables to facilitate the decision-making pro-
cess and system reliability-based design optimization [7,19].
Sensitivity-based importance measures [1,2] were also computed
to quantify the relative importance of the design variables. Sues
and Cesare [20] proposed a method of computing parameter
sensitivity of the system failure probability using the results of
component reliability analysis by the first-order reliability method
and Monte Carlo simulations. Song and Der Kiureghian [21] utilized
the linear programing bounds method [9] in order to compute
lower and upper bounds of the parameter sensitivities of general
system events, even with incomplete information on component
probabilities and their statistical dependence. Despite these pro-
posed methods, computing parameter sensitivities of the system
failure probability is still challenging if the system has a large

number of components and/or the correlation properties of compo-
nent failure events do not allow for achieving conditional indepen-
dence between components given a small number of common
source random variables [18].

Therefore, in this paper, a method of computing parameter
sensitivity of the system failure probability is proposed using the
sequential compounding method (SCM) [22] which was recently
developed to compute multivariate normal integrals of general
system events with a wide range of correlation properties even
for those with a large number of component events. The proposed
method, termed as Chun–Song–Paulino (CSP) method, is illustrated
and tested by a variety of numerical examples. The CSP method is
further demonstrated by application to the first passage probabil-
ity of a structure described by a finite element model subjected
to stochastic excitations.

The remainder of the paper is structured as follows. After a brief
summary of the SCM [22], the SCM-based parameter sensitivity
formulations are derived for series, parallel and general systems
(cut-set system) respectively. Numerical examples test the CSP
method and demonstrate its application to first-passage problems.
Finally, concluding remarks and discussions on future research
needs are provided.

2. Sequential compounding method

In the sequential compounding method (SCM; Kang and Song
[22]), two component events coupled by a union or intersection
operation in the system event are compounded sequentially until
a single compound event eventually represents the system event.
Each compounding procedure consists of determining the proba-
bility of the new compound event, and evaluating the correlation
coefficient between the new compound event and each of the
remaining component events.

First, when two events are coupled by an intersection operation,
the compounding process starts by obtaining the reliability index
of the compound event Eiandj ¼ Ei \ Ej as

biandj ¼ �U�1½PðEi \ EjÞ� ¼ �U�1½U2ð�bi;�bj; qi;jÞ� ð4Þ
where biandj denotes the reliability index of the compound event,
U(�) is the marginal cumulative distribution function (CDF) of the
standard normal distribution, and U2(�) is the joint CDF of the bi-
variate standard normal distribution. qi;j is the correlation coeffi-
cient between the standard normal random variables representing
Ei and Ej, which could be obtained from the inner-product of the
negative normalized vectors of the design points [23]. After biandj

is obtained, the correlation coefficient between Eiandj and each of
the remaining component events Ek;k ¼ 1; . . . ;n; k – i; j, denoted
by qðiandjÞ;k, is computed. The correlation coefficient is determined
such that the compound event can represent Ei \ Ej accurately in
computing the probability of Ei \ Ej \ Ek, i.e.,

U3ð�bi;�bj;�bk;qi;j;qi;k;qj;kÞ ¼ U2ð�biandj;�bk;qðiandjÞ;kÞ ð5Þ

In Eq. (5), qðiandjÞ;k is the only unknown variable, which can be
obtained numerically by nonlinear programing

min
qðiandjÞ;k

U3ð�bi;�bj;�bk;qi;j;qi;k;qj;kÞ �U2ð�biandj;�bk;qðiandjÞ;kÞ
��� ���

s:t: � 1 6 qðiandjÞ;k 6 1

ð6Þ

The multi-fold integrals of the joint CDFs in the optimization prob-
lem can be performed by efficient algorithms such as the one by
Genz [24]. To further reduce the computational costs for solving
Eq. (5) during the optimization process, Kang and Song [22] pro-
posed an approximate procedure as well, which deals with single-
fold integrals only.
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