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a b s t r a c t

This paper presents a new approach for evaluating the reliability index and most probable failure point
(MPFP) of a reinforced concrete (RC) column using the advanced first-order second-moment reliability
method without Monte-Carlo simulations. The P–M interaction diagram (PMID) is selected as the limit
state function of an RC column. The strength parameters of an RC column include the material properties
and geometric properties of the cross section of an RC column. The strength and load parameters are con-
sidered as random variables. An iterative solution scheme with double iteration loops is adopted for
obtaining the MPFP and reliability index. The continuous and differentiable PMID is constructed with dis-
cretely defined sampling points of the PMID using the cubic spline interpolation. The sensitivities of the
PMID are calculated through the direct differentiation of the cubic spline and sampling points of the
PMID. Detailed expressions of the sensitivities of the PMID with respect to the random variables are pre-
sented. The validity of the proposed method is demonstrated through a simple rectangular column and
the pylon of a real cable-stayed bridge. It is shown that the proposed method yields physically meaning-
ful solutions efficiently for the examples presented.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Various types of reinforced concrete (RC) columns ranging from
columns of buildings to pylons of cable-supported bridges are
designed based on the P–M interaction diagrams (PMID) [1], which
define the limit states of columns subject to combined axial and
bending actions. Since the failure of a column may result in the
total collapse of a structure, the precise estimation of the failure
point of a column is one of the most important issues in the design
and the reliability assessment of a column, especially in code
calibrations.

Various approaches [2–8] have been proposed to evaluate relia-
bility indices of RC columns since the statistical characteristics of
the strengths of RC columns were evaluated through the Monte-
Carlo simulations by Ellingwood [9] and Grant et al. [10]. Stewart
and Attard [2] and Szerszen et al. [3] assumed the eccentricity of
total load effect, which is the ratio of bending moment to axial force,
to be a deterministic variable for the reliability assessment of RC

columns. The uncertainty of the eccentricity was taken into account
in the works by Hong and Zhou [4] and Jiang and Yang [5]. Mirza [6]
estimated the moment capacities of RC columns for a fixed axial
force, while Frangopol et al. [7] and Milner et al. [8] performed
the reliability analyses for load paths determined by load correla-
tions. The statistical characteristics of the strength of an RC column
are obtained through the Monte-Carlo simulation [2,3,6–10].

The aforementioned studies are based on one common assump-
tion that the strength of an RC column can be pre-determined on
the PMID by a load condition. That is, the strength of an RC column
can be defined as an intersection point in the P–M space between
the PMID and a straight line connecting the origin and total load
effect [2–5] or between the PMID and pre-defined load path [6–
8]. With this assumption, the limit state function of an RC column
is simply expressed as the assumed strength minus the total load
effect applied to the column, which is an approximation of a real
limit state function but a convenient form to apply a traditional
reliability analysis scheme. However, the approximated limit state
function may lead to erroneous results because the real strength of
an RC column at failure depends on not only the total load effect
but also the statistical characteristics of all random variables. The
PMID itself defines the failure and safe states of an RC column,
and thus the PMID of an RC column should be adopted as the limit
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state function for accurate and reliable assessment. Another short-
coming of the previous studies is that statistical variations are
applied directly to internal forces [2–8]. Since the internal forces
simply represent the load effects induced by the external load
components, the load components should be chosen as indepen-
dent random variables rather than internal forces, and thus the sta-
tistical variations should be taken into account in the individual
load component.

This paper presents a new approach to estimate the MPFP and
reliability index of a short RC column, in which the nonlinear P-
delta effect can be neglected, based on the advanced first-order
second-moment reliability method (AFOSM) [11]. The PMID of an
RC column is adopted as the limit state function for the AFOSM
without employing any assumption on the strength of an RC col-
umn, and external load components rather than internal forces
are selected as independent random variables. The PMID
representing the column strength depends upon the material and
geometric properties of cross section of a column, which are also
considered as random variables. The material properties include
the compressive strength of concrete, the Young’s modulus and
the yield strength of each reinforcing bar. Meanwhile, the gross
area of a cross section, the areas and the locations of reinforcing
bars are the random variables on the geometric properties. The
proposed method does not require Monte-Carlo simulations to
obtain the statistical properties of the column strength. The relia-
bility indices are directly calculated in the AFOSM using the
sensitivities of the PMID with respect to random variables. Since
the PMID is generally nonlinear with respect to the random vari-
ables, the Hasofer–Lind–Rackwitz–Fiessler (HL–RF) algorithm with
the gradient projection method [12] is adopted to solve the mini-
mization problem that defines the MPFP in the AFOSM.

The HL–RF algorithm requires the first-order sensitivities of the
PMID with respect to the random variables. However, the PMID is
defined at discrete sampling points corresponding to given loca-
tions of the neutral axis of a cross section. Therefore, a continuous
and differentiable PMID should be constructed with the discrete
sampling points to calculate the sensitivities of the PMID. The cubic
spline interpolation [13], which is the collection of piecewise cubic
polynomials interpolating two adjacent sampling points of the
PMID, is employed. The coefficients of the cubic spline are
determined based on the continuity requirements up to the sec-
ond-order derivatives at the boundaries between two adjacent seg-
ments of the cubic spline. The direct differentiation of each
segment of the cubic spline with respect to the random variables
yields the sensitivities of the PMID required in the AFOSM.

The validity of the proposed method is demonstrated through
two examples: (1) a simple rectangular section found frequently
in a building structure; and (2) the pylon section of a cable-stayed
bridge in Korea. Detailed investigations on the variations of the
MPFP with different load combinations are presented. It is shown
that a dominant load component governs the limit state of col-
umns, and the variations of the material and geometric properties
have a rather minor effect on the failure of columns.

2. Formulation of the AFOSM for PMID

The PMID of an RC column subject to combined axial and flexu-
ral load is implicitly defined in the axial force (P)-moment (M)
space as follows:

U ¼ UðF;AÞ ¼ 0 ð1Þ

where F ¼ ðP;MÞT , and A is the curve parameter vector of the PMID.
The curve parameters are determined based on the strength
parameters representing the material and geometric properties of
a cross section. The material properties include the compressive
strength of concrete, f ck, the Young’s modulus of the reinforcing

bar, Es, and the yield strength of the reinforcing bar, f y. The def-
initions of the geometric properties for a typical cross section of
an RC column are illustrated in Fig. 1(a). The geometric properties
consist of the gross area of a cross section as well as the area and
position of each reinforcing bar. The strength parameters of an RC
column are conveniently written in one vector.

s ¼ ðsjÞ ¼ ðf ck; f y; Es;Agt;As;1; . . . ;As;k; . . . ;As;m; ys;1; . . . ; ys;k; . . . ; ys;mÞ
T

ð2Þ

where m;Agt ;As;k; ys;k are the number of reinforcing bars, the gross
area of a cross section, the area and position of the k-th reinforcing
bar, respectively. The position of a reinforcing bar is measured from
the extreme compression fiber of the cross section to the center of
the reinforcing bar as shown in Fig. 1(a). All random variables in Eq.
(2) are assumed to be statistically independent to each other.

The PMID given in Eq. (1) defines the limit state of an RC col-
umn. That is, UðFq;AÞ > 0 and UðFq;AÞ < 0 represent the safe and
failure states of the RC column, respectively, and therefore
UðFq;AÞ ¼ 0 depicts the limit state of the RC column. Here, Fq is
the internal force vector representing the load effects of external
load components such as dead load, live load, wind load, etc.
Although each external load component may have nonlinear load
effects on an RC column, linear relations between the internal
forces and the external loads are assumed:

Fq ¼
Pq

Mq

� �
¼ Cq ð3Þ

Here, C and q are the load effect matrix and load parameter vector,
respectively. Each column of the load effect matrix is composed of
the load effects calculated in the structural analysis for the nominal
value of the corresponding load component. The load parameter vec-
tor represents the statistical properties of the load components. Each
load parameter has the nominal value of 1, and its mean and coeffi-
cient of variation (COV) become the bias factor and the COV of the
original load component, respectively. The statistical distributions
of the load parameters follow those of the original load components.

The strength parameters of an RC column and the load parame-
ters are considered to be random variables in this study. For the
compactness of forthcoming derivations, the random variables

are written in one vector, X ¼ ðq; sÞT . In case that all random vari-
ables are normally distributed and statistically independent to
each other, the MPFP of an RC column is estimated using the
AFOSM, in which the MPFP is defined as the solution of the follow-
ing minimization problem [11]:

Min
�X

b2 ¼ �X
�� ��2

2 subject to �Uð�XÞ ¼ 0 ð4Þ

where b and �k k2 denote the reliability index and the 2-norm of a
vector, respectively, while the overbarred variables indicate stan-
dardized random variables and �Uð�XÞ ¼ UðXÞ. The minimization
problem given in Eq. (4) is solved iteratively by the Hasofer–Lind–
Rackwitz–Fiessler (HL–RF) algorithm with the gradient projection
method [12]. The equivalent normal distributions estimated by
the Rackwitz–Fiessler method [14] are utilized for nonnormal ran-
dom variables.

The sensitivity of the PMID with respect to the random vari-
ables is required to solve the minimization problem given in Eq.
(4), and is calculated by the direct differentiation of the PMID using
the chain-rule.
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