
An algorithm for finding a sequence of design points in reliability
analysis

Ziqi Wang a,⇑, Marco Broccardo b, Armen Der Kiureghian b

aDepartment of Bridge Engineering, Southwest Jiaotong University, Chengdu, China
bDepartment of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

a r t i c l e i n f o

Article history:
Received 2 March 2015
Received in revised form 31 July 2015
Accepted 17 September 2015
Available online 1 October 2015

Keywords:
Design point
Nonlinear analysis
Optimization algorithm
Quasi-Newton
Reliability analysis

a b s t r a c t

In the analysis of structural reliability, often a sequence of design points associated with a set of thresh-
olds are sought in order to determine the tail distribution of a response quantity. In this paper, after a
brief review of methods for determining the design point, an inverse reliability method named the k-
method is introduced for efficiently determining the sequence of design points. The k-method uses
Broyden’s ‘‘good” method to solve a set of nonlinear simultaneous equations to find the design points
for the values of an implicitly defined threshold that is associated with parameter k. In a special param-
eter setting, the k parameter equals the reliability index, thus allowing convenient implementation of the
method. Three numerical examples illustrate the accuracy and efficiency of the proposed method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In analysis of structural reliability, there is often interest in solv-
ing the reliability problem for a range of threshold values. Three
specific examples include: (a) determining the probability distri-
bution of a structural response quantity by, e.g., probabilistic
finite-element analysis; (b) determining the fragility (conditional
probability of failure) of a structure for a given range of demand
thresholds; and (c) in stochastic dynamic analysis for determining
such statistics of the response, as up-crossing rates of various
thresholds or probabilities of exceeding a range of thresholds. In
general, these problems can be formulated in terms of a limit-
state function of the form gðx; rÞ ¼ r � RðxÞ, where x denotes a vec-
tor of random variables representing uncertain structural or load
values, RðxÞ denotes the response or capacity quantity of interest,
and r is the threshold. The objective is to solve the reliability prob-
lem for a range of values of r. For the specific examples above, the
corresponding probability expressions are as follows: (a) the
cumulative distribution function (CDF) of response RðxÞ is given
by FRðrÞ ¼ Pr½RðxÞ 6 r� ¼ 1� Pr½gðx; rÞ 6 0�; (b) the fragility func-
tion for capacity RðxÞ is given by Pr½RðxÞ 6 DjD ¼ r�
¼ 1� Pr½gðx; rÞ 6 0�, where r now denotes the threshold of a
demand D; and (c) for a nonlinear stochastic response process
Rðx; tÞ, the first-order solution of the problem Pr½r 6 Rðx; tÞ�
¼ Pr½gðx; t; rÞ 6 0� leads to a tail-equivalent linear system for which

all statistics of interest for threshold r can be determined by linear
random vibration analysis (see Fujimura and Der Kiureghian [16]
and Section 7 in this paper). For the sake of convenience, hereafter
we call the above class of problems threshold-reliability problems.

Since analytical solutions of reliability problems are often
unavailable, approximate techniques, such as the first- and
second-order reliability methods (FORM and SORM) [1,2], response
surface methods (RSM) [3,4], various sampling techniques [5–7],
and expansion methods [8] are used. Several popular methods
among these, including FORM, SORM and importance sampling
(IS) [5], require determination of the so-called ‘‘design point” for
each limit-state function. This is the point on the limit-state sur-
face in a transformed standard normal space, which has minimum
distance from the origin [1]. This point has the property of having
the highest probability density among all failure points in the stan-
dard normal space. Hence, it is an optimal point for constructing
approximations of the surface (first-order in FORM, second-order
in SORM) or as a center of sampling in IS. Furthermore, in FORM,
the distance from the origin to the design point, known as the reli-
ability index, is directly related to the first-order approximation of
the failure probability. The design point is usually obtained by
solving a constrained optimization problem by a gradient-based
algorithm (see, e.g., [9–13,20]). When the reliability problem is to
be solved for a range of thresholds, a sequence of design points
must be computed. This can be a costly computation when evalu-
ation of the limit-state function or its gradient involves extensive
numerical calculations.
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In this paper, we present a new method for determining the
sequence of design points for the class of threshold-reliability
problems. Named the k-method, the proposed method finds the
sequence of design points through inverse reliability analysis. That
is, instead of finding the reliability index for a sequence of thresh-
olds, it finds the threshold values for a sequence of prescribed val-
ues of the parameter k, which in a special case is identical to the
reliability index. Similar to existing methods, the k-method
employs the gradient of the limit-state function; however, it is
far more efficient than existing methods for ‘‘forward” reliability
analysis for a sequence of thresholds. It is important to note that
the k-method has only one convergence criterion, while standard
algorithms for finding the design point have two criteria: The point
must be on the limit-state surface, and it must be an origin projec-
tion point [13]. This is one of the reasons the proposed method is
more efficient.

After a brief review of the conventional formulation for finding
the design point, we present the k-method and develop a specific
algorithm for its solution. We end the paper with three numerical
examples that demonstrate the superior computational efficiency
of the proposed method relative to the most widely used existing
algorithm for finding the sequence of design points.

2. Existing algorithm for finding a sequence of design points

As mentioned earlier, the design point in reliability analysis is
found in a transformed space of standard normal random variables.
Let u ¼ TðxÞ be a one-to-one mapping from the space of original
random variables x to the space of standard normal random vari-
ables u ¼ Nð0; IÞ, where NðM;RÞ denotes the joint normal distribu-
tion with mean vector M and covariance matrix R. Conditions
under which such a transformation exists and its forms for
different classes of the joint distribution of x can be found in Der
Kiureghian [2]. Let Gðu; rÞ ¼ r � RðT�1ðuÞÞ denote the limit-state
function in the standard normal space for a threshold-reliability
problem. The design point is the solution to the constrained opti-
mization problem

u� ¼ argminfkukjGðu; rÞ ¼ 0g ð1Þ
Most efficient algorithms for solving this problem employ the

gradient vector. In the reliability community, the HLRF algorithm
and its modified versions are most widely used. Originally intro-
duced by Hasofer and Lind [9] in the context of second-moment
reliability analysis, the algorithm has been generalized by Rackwitz
and Fiessler [10] to account for distribution information and mod-
ified by Liu and Der Kiureghian [11] and Zhang and Der Kiureghian
[12] to control the step size and improve its convergence. Other
gradient-based algorithms for solving this problem include the
Abdo–Rackwitz algorithm [14], the Polak–He algorithm [15] and
other general-purpose optimization algorithms, such as gradient
projection method and sequential quadratic programming. A com-
parative study of several algorithms used to solve this problem is
reported in Liu and Der Kiureghian [11].

A gradient-based algorithm naturally requires the existence of
the gradient row-vector ruGðu; rÞ ¼ ½@G=@u1 � � � @G=@un�, where n
denotes the number of random variables. The algorithm typically
constructs a sequence of trial points according to the rule

uiþ1 ¼ ui þ sidi; i ¼ 0;1; . . . ð2Þ
where u0 is the initial trial point, di is a search direction that
involves the gradient vector, and si is the step size for the i th iter-
ation. Algorithms are different in their choice of the search direction
and step size. The sequence is considered converged when the fol-
lowing equalities are satisfied within acceptable tolerances:

Gðu; rÞ ¼ 0 ð3Þ

uþ ruGðu; rÞT
kruGðu; rÞk kuk ¼ 0 ð4Þ

Eq. (3) ensures that the design point is located on the limit-state
surface. Eq. (4) assures that the design point is an origin-project
point, i.e., that the gradient vector at the solution point is directed
towards the origin of the standard normal space. This equation also
implies that the gradient and the design point vector have opposite
directions. Once the design point is found, the reliability index is
computed as

b ¼ � ruGðu�; rÞT
kruGðu�; rÞku

� ð5Þ

When the design points for a sequence of thresholds r1 < r2
< � � � < rp are of interest, the above problem must be solved repeat-
edly. However, as shown in Fujimura and Der Kiureghian [16],
advantage can be gained by using a projection method to obtain a
good starting point for each iteration. Having obtained
u�
i�1 ¼ u�ðri�1Þ and u�

i ¼ u�ðriÞ, a good approximation of u�
iþ1 is

û�
iþ1 ¼ u�

i þ h
u�
i � u�

i�1

ku�
i � u�

i�1k
ð6Þ

where h is obtained by solving Gðû�
iþ1; riþ1Þ ¼ 0. û�

iþ1 may now be
used as a starting point for finding u�

iþ1. Fujimura and Der Kiure-
ghian [16] have shown that significant savings in computation
can be achieved by employing this formulation.

3. Formulation of the k-method

For the threshold-reliability problem, the gradient vector has
the form ruGðu; rÞ ¼ �ruRðuÞ, where ruRðuÞ ¼ rxRðxÞJx;u in
which rxRðxÞ is the gradient vector of the response or capacity
function and Jx;u denotes the Jacobian matrix of the inverse trans-

formation x ¼ T�1ðuÞ. Using the above relation in (4), the second
convergence criterion takes the form

u� ruRðuÞT
kruRðuÞk kuk ¼ 0 ð7Þ

We modify this form to read

u� k

kruRðuÞkm
ruRðuÞT ¼ 0 ð8Þ

where k and m are parameters.
Suppose, for a given k and m, u� is a solution of (8). It follows

that the vector ruRðu�Þ and, therefore, the gradient vector of the
limit-state function at u� are collinear with u�, i.e., the gradient
vector passes through the origin. It follows that there is a threshold
r� for which u� is the design point. This threshold is obtained by
setting Gðu�; r�Þ ¼ 0, which yields r� ¼ Rðu�Þ. This is essentially an
inverse-reliability analysis method. By solving (8) for a set of k val-
ues and computing the corresponding thresholds, we obtain a
sequence of thresholds and corresponding design points, which
can then be used for reliability analysis by FORM, SORM or IS. In
particular, the reliability indices are computed according to

b ¼ ruRðu�ÞT
kruRðu�Þku

� ð9Þ

Though (8) involves the gradient vector of the response, we
treat it as a set of nonlinear equations rather than differential
equations. This is because the equation does not involve the
response RðuÞ. Furthermore, it is important to observe that (8) does
not involve the threshold r. This is a result of the particular form of
the limit-state function that we have defined for the threshold-
reliability problem.
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