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a b s t r a c t

In this paper a method to efficiently evaluate the reliability of elastic-perfectly plastic structures is pro-
posed. The method is based on combining dynamic shakedown theory with Subset Simulation. In partic-
ular, focus is on describing the shakedown behavior of uncertain elasto-plastic systems driven by
stochastic wind loads. The ability of the structure to shakedown is assumed as a limit state separating
plastic collapse from a safe, if not elastic, state of the structure. The limit state is therefore evaluated
in terms of a probabilistic load multiplier estimated through solving a series of linear programming prob-
lems posed in terms of the responses of the underlying linear elastic model and self-stress distribution.
The efficiency of the proposed procedure is guaranteed by the simplicity of the mathematical program-
ming problem, the underlying structural model solved at each iteration, and the efficiency of Subset
Simulation. The rigor of the approach is assured by the dynamic shakedown theory. The applicability
of the framework is illustrated on a steel frame example.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The unavoidably aleatory and uncertain nature of the environ-
ment in which building systems are constructed, as well as the
inevitable epistemic and knowledge uncertainties involved in
describing such an environment, implies the necessity of using
probabilistic approaches for assessing the performance of struc-
tural systems. This realization was the driving force behind the
development of reliability-based approaches in civil engineering
[1,2], and the subsequent development of design codes based on
reliability theory [3,4]. It is also the basis on which state-of-the-
art performance-based design is founded [5,6]. Recently there
has been significant interest in developing specific reliability-
based procedures for assessing the performance of wind excited
structures [7–17]. However, as in classic reliability analysis, the
limit states indicating structural failure are associated with first
yield of the structural system. The situation is somewhat different
in seismic engineering due to the importance of the post-yield
behavior in defining adequate performance. For this reason, spe-
cialized methods, such as incremental dynamic analysis (IDA),

have been developed with the aim of bringing together probabilis-
tic design principles and step-by-step non-linear analysis [18]. In
the design of wind excited structures, on the other hand, engineers
generally do not explore the behavior of the structural system
beyond the elastic limit. Probably the main reason for this can be
found in societys intolerance towards damage of buildings due to
wind storms. The downside of this is that the structural systems
of many buildings are designed with no knowledge of their inelas-
tic behavior, potentially leaving them exposed to undesirable col-
lapse scenarios or at least unknown post-yield behavior. From a
research perspective, the problem of understanding and modeling
the inelastic behavior of wind excited structures has been the sub-
ject of a number of works [19–26] including the application of
pushover analysis [27]. The main difficulty in defining a modeling
procedure that can account for this effect is the extremely long
duration of wind storms. Indeed, this characteristic practically
eliminates the possibility of using methods such as IDA as they
require non-linear dynamic integration of the entire load history,
which constitutes a computationally daunting task [28,29]. An
alternative approach for engineered building systems is presented
by the well-established plastic theorem approaches [30–32].
Indeed, recent computational advances make these methods an
attractive alternative for rapidly assessing the general behavior of
ductile structures such as steel and concrete frames [33–35]. These
methods also provide a complete picture of the post-yield behavior
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of the system, indicating for example when the system is in shake-
down or low cycle fatigue (plastic shakedown) which can be of
importance for structures subject to long duration cyclic loads such
as extreme wind excitation.

Shakedown analysis is classically carried out under a quasi-
static loading scenario. Under these conditions, the goal is to
understand whether an elasto-plastic structure subject to loads
varying within a specified domain will eventually respond in a
purely elastic manner after a finite amount of plastic deformation
and is based on the well-known Bleich-Melan and Koiter theorems.
In the last decades, many applications have been treated with this
approach [35–38], including recent applications where both the
loads and the strength parameters have been considered as uncer-
tain [39,40]. When dynamic effects are important, dynamic shake-
down analysis becomes necessary. This concept was first
introduced by Ceradini [41] through the development of a lower
bound theorem which took the form of conditions under which
an elasto-plastic solid subject to an infinite dynamic load history
will shakedown. The main difference between quasi-static and
dynamic shakedown analysis is that in the first the loading history
is defined by a convex domain in which the loads may be repeated
indefinitely, while in the second the load history must be fully
specified. In addition, unlike the quasi-static theory, in dynamic
shakedown the solution will in general depend on the initial con-
ditions of the fictitious elastic response. This situation generally
makes the application of Ceradini’s theorem considerably more
computationally involved compared to the quasi-static scenario.
An important special case that significantly facilitates dynamic
shakedown analysis, and which will be exploited in this work, is
when the forcing functions are infinite and periodic [30,42–44].

The aim of this paper is to define a framework based on the
aforementioned concept of dynamic shakedown that can be used
for efficiently assessing the shakedown limit behavior of uncertain
elastic perfectly plastic structures subject to long duration stochas-
tic wind loads.

2. The dynamic shakedown problem for elastic perfectly plastic
frames

2.1. Mechanical model

In order to introduce the formulation of interest to this study, it
is first convenient to consider a discrete elastic perfectly plastic
plane frame defined by nb Euler–Bernoulli beam elements and nN

free nodes in a small displacement and deformation regime (the
generalization to 3D frames is immediate). Consider indicating
with u and F the vectors of dimensions nf collecting the displace-
ments and external loads of the free nodes, and with q and Q the
vectors of dimensions nd collecting the generalized strains and
stresses where nf ¼ 3 � nN and represents the total number of free
degrees of freedom of the system while nd ¼ 6 � nb represents the
total number of stress and strain parameters at the ends of each
beam element. The equilibrium of the aforementioned system
can be expressed as:

CTQ ¼ F �M€u� V _u ð1Þ
where CT is the equilibrium matrix while M and V are the mass
and damping matrices. Furthermore, in Eq. (1) and in what

follows, the over-dot indicates the time derivative while ð�ÞT
indicates the transpose of the relevant quantity. Geometric
compatibility between strains and displacements of the nodes
can be imposed through:

q ¼ Cu ð2Þ
where q represents the sum of an elastic (e) and a plastic (p) strain:

q ¼ eþ p ð3Þ
while C is a compatibility matrix depending only on the geometry
of the system. The elasticity equations for this system may be
expressed as:

Q ¼ Deþ Q � ð4Þ
where D is the block diagonal matrix containing the elastic stiffness
matrices of the nb beam elements defining the structure while Q � is
the vector collecting the perfectly clamped element generalized
stresses.

The generalized stresses at each cross section of the structure
cannot lie outside of the yield surface, therefore the vector Q must
respect the following inequality:

u ¼ NTQ � R 6 0 ð5Þ
where u is the piece-wise linearized yield vector, N is a block diag-
onal matrix of unit external normals to the piece-wise linear convex
yield surface while R is the plastic resistance vector. When at least
one of inequalities of Eq. (5) is an equality, plastic strain can occur
according to the following plastic flow rule:

_p ¼ N _k; _k P 0; uT _k ¼ 0; _uT _k ¼ 0 ð6Þ

in which k represents the vector of plastic multipliers. Eqs. (1)–(6)
together with the initial conditions

u ¼ u0; _u ¼ _u0; p ¼ p0; for t ¼ 0 ð7Þ

govern the dynamic analysis problem of elastic perfectly plastic
plane frames. It is worth noting that the external stiffness
matrix of the plane frame is given by K ¼ CTDC. This problem
is usually solved by means of a step-by-step procedure set in
a deterministic environment. To the authors’ knowledge, no
exact solution exists.

When the response of an elasto-plastic structure subject to
dynamic loading becomes purely elastic, after a first phase of finite
duration in which some plastic deformations are produced, the
structure is said to have adapted to an elastic state and ‘‘dynamic
shakedown” has occurred. In other words, a finite field of time-
independent plastic strains has formed that allows the structure
to respond in a purely elastic regime. The term shakedown implies
the finite nature of the plastic deformations that in general are to
be considered modest even though their exact amount is unknown
as is the exact time at which the plastic phase ends and the purely
elastic one begins. If the structural response exceeds the shake-
down limit, the structure is exposed to a sort of inadaptation col-
lapse, characterized by the uncontrolled growth of the plastic
deformation during the load history with the possibility of failure
due to the excessive accumulation of plastic strains (incremental
collapse), or by inverting plastic strains in a cyclic loading scenario,
with the possibility of failure by fatigue (alternating plasticity
collapse).

2.2. Dynamic shakedown

A criterion for dynamic shakedown, for a structure subject to a
fully specified loading history from t ¼ 0 to t ¼ þ1, was given first
by Ceradini [41,43] and is as follows: a necessary and sufficient
condition for dynamic shakedown is that there exists a finite time
r P 0, and some initial conditions in terms of displacements u�

0,
velocities _u�

0 and plastic strains p�
0, such that the purely elastic

stress response (fictitious) to the given load history with these ini-

tial conditions Q̂ ðtÞ proves to be inside the yield surface at any sub-
sequent time t P r:

u ¼ NTQ̂ðtÞ � R < 0; 8t P r: ð8Þ
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