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a b s t r a c t

The First Order Reliability Method is well accepted as an efficient way to solve structural reliability prob-
lems with linear or moderately non-linear limit state functions. Bounded random variables introduce
strong non-linearities in the mapping to standard Gaussian space, making search for design points more
demanding. Since standard Gaussian space is unbounded, two particular problems have to be addressed:
a. the limiting behavior of the probability mapping as a random variable approaches its upper or lower
limits; b. how to impose the bounds if design point search leaves the problems supporting domain.
Both problems have been overlooked elsewhere, and are addressed in the present article. Based on the
Principle of Normal Tail Approximation, two alternatives for the mapping to standard Gaussian space
are studied. Three different schemes are proposed to impose the limits of bounded random variables,
in the reverse mapping to original design space. Several algorithms are investigated with respect to their
ability to find the design point in highly non-linear problems involving bounded random variables. A
challenging benchmark reliability problem is also presented herein, and used as a test bed to explore
the proposed strategies and the performance of the optimization algorithms.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The First Order Reliability Method is well accepted as an
efficient way to solve structural reliability problems with linear
or moderately non-linear limit state functions. High non-linearity
is introduced in reliability problems by non-linear mechanical
responses [1], but also by correlation between the random vari-
ables and by highly non-Gaussian probability distributions. Corre-
lation, non-Gaussianity and generally bounded distributions
introduce non-linearities in the mapping to standard Gaussian
space, making the search for the design point more demanding.

Several algorithms for structural reliability analysis using FORM
have been proposed [2–12]. This includes simple, mathematical
programming algorithms [2–8] as well as heuristic algorithms such
as particle swarm optimization [9] or genetic algorithms [10,11].
Techniques for solving structural reliability problems using FORM
also include the use of response surfaces [12–19]. Many of these
algorithms and techniques have found their way into well-
established structural reliability software [20–22]. However, none
of the cited articles [2–22] addresses the specific challenges in
finding the design point in problems involving uniform or other

bounded random variables. Instability and convergence difficulties
were identified by Youn and Choi [23], in reliability-based design
optimization problems involving uniform and non-Gaussian distri-
butions. For problems involving only (multi-dimensional) uniform
random variables, optimization techniques that look for the most
probable failure point in original design space [24] cannot be used,
as all points are equally likely. Hence, the specific difficulties of
finding the design point in problems involving uniform or gener-
ally bounded random variables have not been consistently
addressed in the published literature.

This article discusses challenges in finding the design point in
problems involving uniform and other bounded random variables.
The discussion covers the Principle of Normal Tail Approximation
[25,26], and the mapping to the standard Gaussian space. Two
alternatives for this mapping are considered: a direct and theoret-
ically reversible mapping, and a formal but potentially irreversible
mapping. These mappings are studied as the interactive design
point search moves outside of the support domain (some random
variable is pushed beyond its lower or upper limit).

As standard Gaussian space is unbounded, during design point
search any bounded random variable could potentially exceed its
limits, causing breakdown of the computations. Hence, bounds
have to be imposed when mapping random variables back to the
original design space. Three different schemes are presented in this
article to impose the limits of bounded random variables: bisection,
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reflection and limit. The three schemes are tested in combination
with the direct and the formal probability mapping.

A challenging academic problem is also presented in the article.
It involves a simply-supported beam subject to a concentrated load
of random intensity. The load can occupy a random position over
the beam, following an uniform distribution. Although the under-
lying mechanical problem is very simple, the uniform distribution
introduces strong non-linearities, which makes finding the design
point a very challenging task. An N-dimensional version of the
same problem, involving N=2 concentrated loads, is also
considered.

It is shown that the Hasofer–Lind–Rackwitz–Fiessler (HLRF)
algorithm fails to converge for most configurations of the
proposed problems. Hence, the improved HRFL (iHLRF) and
Sequential Quadratic Programming (SQP) algorithms are also
employed in the solutions. The performance of these
algorithms is investigated with respect to two mappings to
standard Gaussian space and to the three schemes to impose
the bounds in the reverse probability mapping. In total,
twenty-eight configurations of the proposed benchmark
problem are investigated. The article is finished with relevant
conclusions with respect to the several alternatives proposed
herein for the solution of reliability problems involving
bounded random variables.

2. FORM and probability mapping

2.1. The First Order Reliability Method (FORM)

Let X¼½X1;X2; . . . ;Xn�t be a random variable vector describing
the uncertainties in geometry, material properties and loading,
where n is the number of random variables and [�]t is the transpose
operator. A limit state function gx : R

n ! R is written in such a way
as to divide the random variable domain in safety and failure
domains:

Xf ¼ fxjgxðxÞ 6 0g is the failure domain;
Xs ¼ fxjgxðxÞ > 0g is the safety domain:

ð1Þ

The failure probability is given by:

Pf ¼ P½X 2 Xf � ¼
Z
Xf

f XðxÞdx ð2Þ

where f Xð�Þ denotes the joint probability density of random
vector X. Also, assume that some variables in X have limited
support on the real line (i.e., they are bounded), such that:
fxa 6 x 6 xbg.

The First Order Reliability Method (FORM) is generally accepted
as an efficient way to solving Eq. (2), for low dimensions of vector X
and for linear or moderately non-linear limit state functions gxð�Þ.
In the FORM method, Eq. (2) is solved indirectly, by introducing a
convenient mapping from the space of the original random vector
X (x-space) to the so-called standard Gaussian space (u-space)
[25,27–29]:

u ¼ TðxÞ; gðu; tÞ ¼ gxðT�1ðuÞ; tÞ; ð3Þ

where all components of vector u are independent and identically
distributed standard Gaussian random variables. This mapping
can be accomplished by means of the Principle of Normal Tail
Approximation [25] and by the Nataf transformation [27–29], to
be described.

In standard space, the joint probability density f Uð�Þ is rotation-
ally symmetric: hence, the point u� on the limit state function gð�Þ
which is closest to the origin represents the most probable failure

point, also known as design point. This feature allows search for
the design point to be cast as a constrained optimization problem:

u� ¼ arg minf12utug;
subject to gðuÞ ¼ 0:

(
ð4Þ

From Eq. (4), b ¼ ku�k ¼ ðu�tu�Þ1=2 is the so-called Hasofer–Lind
reliability index [30], which comes to be the distance between u�

and the origin of standard Gaussian space. The FORM method,
therefore, consists in finding the design point u� and approximat-
ing the original limit state function gðuÞ by a tangent hyper-
surface at the design point. Hence, the first-order approximation
of the failure probability becomes:

Pf ¼ P½gðUÞ 6 0� ’ Uð�bÞ; ð5Þ

where Uð�Þ is the standard Gaussian cumulative probability distri-
bution function.

For the highly non-linear problems to be considered herein, the
first order approximation of the failure probability is unlikely to be
accurate. However, it is still important to be able to find the design
point, for instance, in order to perform Monte Carlo simulation
with importance sampling using the design point [31] or to con-
struct precise response surface approximations centered at the
design point [14,15,19].

It is important to point out that the concept of a design point as
the most probable failure point is theoretical, and associated to the
transformation to standard Gaussian space. For instance, for
(multi-dimensional) problems involving only uniform random
variables, all points in the failure domain are equally likely in x-
space. . . However, the concept and the usual interpretations
remain valid in u-space.

2.2. Normal tail approximation

The Principle of Normal Tail Approximation [25] allows a non-
Gaussian variable X to be transformed in an ‘‘equivalent” Gaussian
variable Y by means of a point-wise probability mapping:

FYðx�Þ ¼ FXðx�Þ: ð6Þ
The mapping in Eq. (6) is applied, in scalar fashion, to the mar-

ginal distributions. Eq. (6) is a probability-preserving equation,
which makes the probability content to the ‘‘left” and ‘‘right” of
point x� to remain unaltered in the mapping. However, two param-
eters (lY and rY – mean and standard deviation) of the ‘‘equiva-
lent” Gaussian variable Y have to be determined. Hence, an
additional equation is required. A second equation, used herein
to complete the mapping, is [25]:

f Y ðx�Þ ¼ f Xðx�Þ: ð7Þ
This equation is completely arbitrary, and is not required for

probability preservation. Other equations and rules for the proba-
bility mapping have also been presented elsewhere [26].

Introducing the Hasofer–Lind transformation [30]:

u� ¼ x� � lY

rY
; ð8Þ

the mapping can be accomplished directly to standard Gaussian
space. Manipulating Eqs. (6)–(8), well-known equations are
obtained for the desired parameters (lY and rY ):

u� ¼ U�1ðFXðx�ÞÞ; ð9Þ

rY ¼ /ðu�Þ
f Xðx�Þ

; ð10Þ

lY ¼ x� � u�rY : ð11Þ
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