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Quantitative measurement of localized longitudinal changes in brain abnormalities at an individual level may
offer critical information for disease diagnosis and treatment. The voxel-wise permutation-based method
SPREAD/iSPREAD,which combines resampling and spatial regression of neighboring voxels, provides an effective
and robust method for detecting subject-specific longitudinal changeswithin thewhole brain, especially for lon-
gitudinal studies with a limited number of scans. As an extension of SPREAD/iSPREAD, we present a general
method that facilitates analysis of serial Diffusion Tensor Imaging (DTI) measurements (with more than two
time points) for testing localized changes in longitudinal studies. Two types of voxel-level test statistics
(model-free test statistics, which measure intra-subject variability across time, and test statistics based on gen-
eral linear model that incorporate specific lesion evolution models) were estimated and tested against the null
hypothesis among groups of DTI data across time. The implementation and utility of the proposed statistical
method were demonstrated by both Monte Carlo simulations and applications on clinical DTI data from
human brain in vivo. By a design of test statistics based on the disease progression model, it was possible to ap-
portion the true significant voxels attributed to the disease progression and those caused by underlying anatom-
ical differences that cannot be explained by themodel, which led to improvement in false positive (FP) control in
the results. Extension of the proposed method to include other diseases or drug effect models, as well as the fea-
sibility of global statistics, was discussed. The proposed statisticalmethod can be extended to a broad spectrumof
longitudinal studies with carefully designed test statistics, which helps to detect localized changes at the individ-
ual level.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Diffusion Tensor Imaging (DTI) (Le Bihan et al., 2001; Tournier et al.,
2011), which measures the random motion of water molecules, pro-
vides a non-invasive way to investigate the structural integrity of the
brain. It has been widely used in investigating white matter (WM)
changes caused by brain development and aging (Westlye et al.,
2009), detecting abnormalities in normal-appearingWMdue to disease
(Weiner et al., 2000), as well as identifying pathologic severity in

patients with MS (Werring et al., 1999). In recent years, there has
been increasing interest in the investigation of subject-specific changes
within the brain without prior information regarding the spatial distri-
bution of the pathology. Consequently, whole brain voxel-based
methods (Ashburner and Friston, 2000; Smith et al., 2006; Tustison
et al., 2014) have gained much favor during recent years as an impor-
tant alternative to region of interest (ROI) analysis in detecting localized
changes within the brain and are most suitable when changes/effects
are diffuse among individual subjects. Both parametric and nonpara-
metric methods have been used to help identify regionally specific
changes such as differences due to activation in fMRI (Nichols and
Holmes, 2002), neuroanatomical differences in structure MRI data
(Bullmore et al., 1999) and pathophysiology in longitudinal studies
(Zhu et al., 2013; Chung et al., 2008).

Due to the non-Gaussian nature of DTI data, nonparametric voxel-
based methods that do not need any parametric assumptions such as
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bootstrap (Heim et al., 2004; Zhu et al., 2008; Bazarian et al., 2012) and
permutation-based methods (Nichols and Holmes, 2002), are more
suitable. The nonparametric permutation-based method is able to de-
vise a data-driven null distribution with only minimal assumptions,
which gives the user more freedom in devising test statistics of interest.
Any sensible test statistic that summarizes the local effect can be used in
these hypothesis-testing procedures and the strong control of type I
error is guaranteed under very mild assumptions of the null distribu-
tion. Such methods have been widely used in the area of fMRI to inves-
tigate the regionally specific effect in neuroimaging data (Nichols and
Holmes, 2002). However, few of the aforementioned methods have
been applied to subject-specific longitudinal studies. This is mainly be-
cause the number of available scans in a longitudinal study is often lim-
ited by practical factors such as the cost of patient recruitment, and the
obtained data lacks sufficient information for a rigorous statistical infer-
ence test due to their low degrees of freedom.

The Spatial Regression Analysis of Diffusion tensor imaging
(SPREAD) method previously presented (Zhu et al., 2013) combines
spatial regression and resampling methods, which provides a novel
and efficientwhole brain analysismethod for detecting localized chang-
es in subject-specific longitudinal study without an a priori hypothesis,
for DTI-derivedmetrics such as fractional anisotropy (FA) andmean dif-
fusivity (MD). SPREAD requires only one scan per time point for a valid
statistical inferential test, which greatly reduces the granularity of per-
mutation. The iSPREAD method (Liu et al., in press) further improves
the detection sensitivity and accuracy of SPREAD (Zhu et al., 2013) sub-
stantially by incorporating a three-dimensional (3D) nonlinear aniso-
tropic diffusion filtering method. Both SPREAD and iSPREAD utilize a
novel and effective permutation-based statistical method for whole
brain analysis that relies on permuting time/scan labels and spatial ker-
nel regression. They donot require adjustment of signal gains due to dif-
ferent DTI protocols at different time points and are effective for
monitoring subject-specific lesion progression in longitudinal studies.
However, aside from their many advantages, the following limitations
exist for SPREAD/iSPREAD, which are also general to most
permutation-based voxel-wise subject-specific methods applied in lon-
gitudinal studies:

1) The comparison is often taken pairwise between each time point vs.
baseline, which is time consuming in the presence of serial DTI stud-
ies with multiple time points.

2) The potential differences caused by registration error or anatomical
differences due to atrophic changes may manifest as false-positive
voxels in the results. The consequences for such misalignment can
either falsely identify positives or neglect true positives, both of
which greatly reduce the statistical power and reliability of the re-
sults obtained.

3) The apparent and useful prior information of lesion progression
models is largely neglected in these existing methods.

Therefore, a general statistical framework that accommodates a seri-
al DTI study with multiple time points while taking into consideration
the specific disease progression model is desired.

The main purpose of many longitudinal studies is to identify local-
ized temporal changes within the brain. One crucial step towards de-
tecting localized changes is to choose test statistics that are likely to be
the most sensitive and informative in depicting possible departures
from the null hypothesis, which assumes that there is no difference be-
tween data obtained at different timepoints. The statistical properties of
any given hypothesis-testing procedure depend on both the null hy-
pothesis, which specifies the distributional properties of the measure-
ments without true signal, and the alternative hypothesis, which
specifies the possible forms of true signal (temporal changes, in this
case). The non-parametric permutation-based methods, such as
SPREAD/iSPREAD, permit the use of a wide range of test statistics with-
out the need to derive closed-formdistributions of these statistics under
the null hypothesis with specific parametric assumptions. This

flexibility enables us to focus on choosing the optimum statistics
based on different alternative hypotheses.

In this study, we proposed to extend the current SPREAD/iSPREAD
method to a general statistical framework that accommodates a wide
range of alternative hypotheses used in longitudinal studies. Five test
statistics, which were divided into two major types, were implemented
in the current statistical framework to help identify several different
forms of temporal changes within individual subjects. One type is
based on model-free test statistics; another is based on a general linear
model that incorporates a certain disease evolution model. Our statisti-
cal method is similar in spirit to twowell-establishedmethods in statis-
tical parametric maps (SPM) for assessing the regionally specific effects
within the brain, namely the subtractive method (Worsley et al., 1992,
1996) and the general linear model (Friston et al., 1994), both of
which have been widely used in the fMRI field for detection of brain ac-
tivation.Weuse those theorieswithin a nonparametric frameworkwith
carefully designed test statistics where the empirical null distribution is
generated by permutation.

The aim of the present study was to describe and illustrate a statisti-
cal method that enables the investigation of longitudinal changes quan-
titatively. Simulation data with a predefined region of pathology and
disease effects were used to evaluate the effectiveness of the proposed
method. A series of DTI scans in three patients suffering from
relapsing-remitting multiple sclerosis (RRMS) were used as human
brain in vivo examples to demonstrate the implementation and utility
of this method. Both simulations and in vivo results show that the pro-
posedmethod is able to detect temporal changes in serial DTI with high
sensitivity and accuracy. Extension of the proposed statistical frame-
work to include other disease evolution/drug effect models as well as
different global statistics is discussed. The method is an extension of
SPREAD/iSPREAD, as well as an independent statistical framework that
can be easily applied to a wide variety of longitudinal studies.

2. Material and methods

2.1. Overview of iSPREAD for serial DTI analysis

Based on the exchangeability of the time and scan labels under the
null hypothesis (Zhu et al., 2013), in the first step of iSPREAD analysis,
the scan/time labels for FA/MD maps from each subject are randomly
permuted at each voxel for N=1000 times to generate a permutation
distribution under the null hypothesis at each voxel. The permutated
images are then smoothed using the nonlinear anisotropic filtering
method for edge-preserving image enhancement, aswell as for preserv-
ing spatial correlation between neighboring voxels. In the third step,
various voxel test statistics are chosen to depict the temporal changes
in a serial DTI analysis andwill be discussed in detail in the next section.
The Westfall-Young procedure (Nichols and Hayasaka, 2003) is used to
control the FWER in the last step. Voxels are identified as significantly
changing (i.e. lesion areas) if their p-value is less than a predefined p-
value (e.g. 0.05). The flowchart of the proposed framework is shown
in Fig. 1.

2.1.1. The anisotropic diffusion filter
Nonlinear anisotropic diffusion filtering provides a general scale-

space approach for edge-preservingpiecewise smoothing of the original
image. The nonlinear scale space generated by nonlinear diffusion filter-
ing is proposed from an analogy to thermal equations that describe the
diffusion process. The Perona-Malik (PM) (Perona and Malik, 1990)
equation for the process is shown in Eq. (1):

∂tI z;~t
� � ¼ div g z;~t

� � � ∇I z;~t� �� �
; ð1Þ

where function Iðz;~tÞ is taken as the image intensity (e.g. FA or MDmap
in our study), and~t is the discrete cases. The conductance functiongðz;~tÞ
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