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a b s t r a c t

An artificial neural network (ANN) based approach is developed for estimating the power spectrum of
stochastic processes subject to missing/limited data. In this regard, an appropriately defined ANN is uti-
lized to capture the stochastic pattern in the available data in an average sense. Next, the extrapolation
capabilities of the ANN are exploited for generating realizations of the underlying stochastic process.
Finally, power spectrum estimates are derived based on established frequency (e.g. Fourier analysis),
or versatile joint time–frequency analysis techniques (e.g. wavelets) for the cases of stationary and
non-stationary stochastic processes, respectively. One of the significant advantages of the approach
relates to the fact that no a priori knowledge about the data is assumed, while the approach is applicable
for treating non-stationary processes not only with separable but non-separable in time and frequency
evolutionary power spectra as well. Comparisons of several target power spectra with Monte Carlo sim-
ulation based power spectrum estimates demonstrate the versatility and reliability of the approach for up
to 50% missing data.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Probabilistic engineering simulations often require models for
the engineering system excitation/response processes. In this
regard, evolutionary power spectrum (EPS) estimation can be a
central part of this modelling process [1,2]. Further, for stochastic
process model based Monte Carlo simulations to be reliable, mod-
elling/estimation techniques often require a significant amount of
data and/or some prior knowledge of the underlying physics of
the process; i.e. the more data on which a model is built, the more
statistically accurate the simulation is likely to be. Nevertheless, in
several engineering applications large amounts of data can be dif-
ficult to acquire for several reasons, such as cost (e.g. expensive
sensor maintenance in harsh conditions/ remote areas), frequency
and unpredictability of the effect (e.g. earthquakes), and sensor
failures (e.g. damage from the effect itself, using cheap sensors,
etc). Further, available data can often be highly limited and irregu-
larly sampled. When working with limited data, standard Fourier
techniques for spectral estimation, e.g. [3], can demonstrate poor
performance, and without any prior knowledge of the underlying

statistics of the process, alternative (less general) analysis tech-
niques can be problematic in certain cases. For instance, autore-
gressive methods may require significant amounts of data upon
which to build models, e.g. [4,5]. Furthermore, most spectral esti-
mation approaches require uniformly sampled data, whereas the
majority of available methods for dealing with non-uniform sam-
pling perform satisfactorily mostly in cases of idealized scenarios
where missing data are infrequent [6–10], or when a very limited
number of significant harmonic components is assumed [11,12].
Additional challenges arise when dealing with non-stationary data.
In this regard, to estimate the power spectrum of a non-stationary
process, the Gabor transform [13], wavelets [14–18], chirplets [19]
and the Wigner–Ville distribution [20,21] present a means of ana-
lyzing the non-stationary spectral content of a signal. Nevertheless,
many of the approaches for addressing missing data in the station-
ary case cannot be applied, at least in a straightforward manner, for
non-stationary cases, or assume that the process is locally station-
ary [22].

In general, if a measured realization of a stochastic process is
available for analysis with no further information than that con-
tained within the sample, it is impossible to predict with certainty
what lies beyond the known time interval. Similarly, if data points
are missing within the same sample, it is impossible to predict
them with certainty. Further, if the focus is not on predicting

http://dx.doi.org/10.1016/j.strusafe.2014.10.001
0167-4730/� 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

⇑ Corresponding author.
E-mail addresses: l.comerford@liv.ac.uk (L. Comerford), iak2115@columbia.edu

(I.A. Kougioumtzoglou), m.beer@liv.ac.uk (M. Beer).

Structural Safety 52 (2015) 150–160

Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/ locate/s t rusafe

http://crossmark.crossref.org/dialog/?doi=10.1016/j.strusafe.2014.10.001&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.strusafe.2014.10.001
http://creativecommons.org/licenses/by/3.0/
mailto:l.comerford@liv.ac.uk
mailto:iak2115@columbia.edu
mailto:m.beer@liv.ac.uk
http://dx.doi.org/10.1016/j.strusafe.2014.10.001
http://www.sciencedirect.com/science/journal/01674730
http://www.elsevier.com/locate/strusafe


exactly what happens within intervals of missing data, but instead,
on determining a complete time history to be used in a Monte Car-
lo simulation analysis for instance, then predicting the missing
data in an average sense can be satisfactory.

For instance, in a Monte Carlo analysis it is often required that
millions, or even billions of samples are considered to estimate rare
events probabilities reliably [23]. Obviously, it is not always possi-
ble to collect that many real time histories; thus, they must be sim-
ulated in an appropriate manner. In this regard, an appropriate
spectral analysis can be conducted on the few available measured
time histories, and then new time histories with the same statisti-
cal characteristics can be further generated for a larger scale anal-
ysis. If the available measured time histories contain gaps, the
problem is not that the time histories no longer contain important
underlying process information (and, thus, they should be dis-
carded), but that traditional spectral analysis techniques are not
equipped to identify this information.

In this regard, an artificial neural network (ANN) approach, e.g.
[24] is developed herein to facilitate estimating the power spec-
trum (stationary or non-stationary) of stochastic processes subject
to missing data. First, an appropriately defined ANN is employed to
capture the stochastic pattern in the available data in an average
sense. Next, the ANN, having stored process trends within its con-
nection weights, is exploited for generating new data to fill sam-
pling gaps fitting with the underlying stochastic process. Note
that the ANN is utilized only to reconstruct data in the time
domain and not to produce spectra directly; once the record is
reconstructed, a range of spectral estimation methods become
immediately applicable (Fourier, Wigner–Ville, maximum entropy
etc). In this paper, Power spectrum estimates are derived by utiliz-
ing standard Fourier analysis (stationary case), or recently devel-
oped wavelet based EPS estimation approaches (non-stationary
case). Several numerical examples are included to demonstrate
the reliability of the approach.

2. Technical methodology

2.1. Stochastic process representation and spectral estimation

In this section, a concise review on stationary and non-station-
ary stochastic process representation is included for completeness.
Further, a recently developed wavelet based evolutionary power
spectrum estimation approach is delineated as well. The latter is
instrumental in assessing the reliability of the ANN approach for
generating complete realizations, and eventually, for estimating
the underlying stochastic process EPS.

For any real-valued stationary process, XðtÞ, there exists a corre-
sponding complex orthogonal process ZðxÞ such that XðtÞ can be
written in the form of Eq. (1), e.g. [3,25,26].

XðtÞ ¼
Z 1

0
eixdZðxÞ ð1Þ

where
ZðxÞ has the properties

E dZ2 xð Þ
��� ���� �

¼ 4SX xð Þdx ð2Þ

and

E dZ xð Þð Þ ¼ 0: ð3Þ

In Eq. (2), SXðxÞ is the two-sided power spectrum of the process
XðtÞ. Further, a versatile formula for generating realizations compat-
ible with the stationary stochastic process model of Eq. (1) is given
by [27]

XðtÞ ¼
XN�1

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SX xj

� �
Dx sin xjt þUj

� �q
ð4Þ

where Uj are uniformly distributed random phase angles in the
range 0 6 Uj < 2p. Furthermore, regarding estimation of the power
spectrum of the process of Eq. (1) based on available realizations,
this is given by the ensemble average of the square of the absolute
Fourier transform amplitudes of the realizations. In this context,
standard established Fast Fourier Transform algorithms can be uti-
lized, e.g. [28].

Next, for the case of non-stationary stochastic processes, a sim-
ilar to Eq. (1), rigorous process representation of non-stationary
stochastic processes needs to be employed. In this regard, Nason
et al. [29] developed a framework for representing non-stationary
stochastic processes by utilizing a time/frequency-localized wave-
let basis as opposed to the Fourier decomposition of Eq. (1). The
representation reads

X tð Þ ¼
X

j

X
k

wj;kwj;k tð Þnj;k; ð5Þ

where nj;k is a stochastic orthonormal increment sequence; wj;kðtÞ is
the chosen family of wavelets and j and k represent the different
scales and translation levels, respectively. Further, the local contri-
bution to the variance of the process of Eq. (5) is given by the term
wj;k

�� ��2. The wavelet-based model of Eq. (5) relies on the theory of
locally stationary processes (see also [30]). The aforementioned
wavelet based representation can be viewed as a natural extension
in the wavelet domain of earlier work related to the representation
of non-stationary stochastic processes, e.g. [1,30].

Focusing next on generalized harmonic wavelets [17], these
have a box-shaped frequency spectrum, whereas a wavelet of
m;nð Þ scale and kð Þ position in time attains a representation in

the frequency domain of the form

WG
ðm;nÞ;k xð Þ ¼

1
n�mð ÞDx e �ix kT0

n�m

� �
; mDx 6 x 6 nDx

0; otherwise

(
; ð6Þ

where m;n and k are considered to be positive integers and Dx ¼ 2p
T0

,
where T0 is the total time duration of the signal under consider-
ation. A collection of harmonic wavelets of the form of Eq. (6) spans
adjacent non-overlapping intervals at different scales along the
frequency axis. The inverse Fourier transform of Eq. (6) gives
the time-domain representation of the wavelet which is equal to

WG
ðm�nÞ;kðtÞ ¼

e inDx t� kT0
n�m

� �� �
� e imDx t� kT0

n�m

� �� �
i n�mð ÞDx t � kT0

n�m

� � ð7Þ

Furthermore, the continuous generalized harmonic wavelet trans-
form (GHWT) is defined as

WG
ðm;nÞ;k ¼

n�m
kT0

Z 1

�1
f ðtÞwG

ðm;nÞ;kðtÞdt; ð8Þ

and projects the function f tð Þ on this wavelet basis. Next, utilizing
the generalized harmonic wavelets, Eq. (5) becomes (see [31])

X tð Þ ¼
X
ðm;nÞ

X
k

X m;nð Þ;k tð Þ
� �

; ð9Þ

where

X m;nð Þ;k tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S m;nð Þ;k n�mð ÞDx

q
w m;nð Þ;k tð Þn m;nð Þ;k ð10Þ

Eq. (10) represents a localized process at scale m; nð Þ and translation

kð Þ defined in the intervals mDx; nDx½ � and kT0
n�m ;

kþ1ð ÞT0
n�m

h i
; whereas

S m;nð Þ;k represents the EPS SX x; tð Þ at scale m; nð Þ and translation
kð Þ. In [31] it has been shown that under certain assumptions, Eq.

(10) can be written in the form

X m;nð Þ;k tð Þ ¼
Z nDx

mDx
eix t� kT0

n�m

� �
dZ m;nð Þ;k xð Þ; ð11Þ
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