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Despite consensus on the neurological nature of autism spectrum disorders (ASD), brain biomarkers remain
unknown and diagnosis continues to be based on behavioral criteria. Growing evidence suggests that brain ab-
normalities in ASD occur at the level of interconnected networks; however, previous attempts using functional
connectivity data for diagnostic classification have reached only moderate accuracy. We selected 252 low-
motion resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging Data Exchange (ABIDE)
including typically developing (TD) and ASD participants (n = 126 each), matched for age, non-verbal IQ, and
head motion. A matrix of functional connectivities between 220 functionally defined regions of interest was
used for diagnostic classification, implementing several machine learning tools. While support vector machines
in combination with particle swarm optimization and recursive feature elimination performed modestly (with
accuracies for validation datasets b70%), diagnostic classification reached a high accuracy of 91% with random
forest (RF), a nonparametric ensemble learning method. Among the 100 most informative features (connectivi-
ties), for which this peak accuracy was achieved, participation of somatosensory, default mode, visual, and sub-
cortical regions stood out. Whereas some of these findings were expected, given previous findings of default
mode abnormalities and atypical visual functioning in ASD, the prominent role of somatosensory regionswas re-
markable. The finding of peak accuracy for 100 interregional functional connectivities further suggests that brain
biomarkers of ASD may be regionally complex and distributed, rather than localized.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous disorder,
diagnosed on the basis of behavioral criteria. From the neurobiological
perspective, ‘ASD’ can be considered an umbrella term thatmay encom-
pass multiple distinct neurodevelopmental etiologies (Geschwind and
Levitt, 2007). Since any given cohort is thus likely composed of ill-

understood subtypes (whose brain features may vary subtly or even
dramatically), it is not surprising that brain markers with perfect
sensitivity and specificity remain unavailable. Nonetheless, given
the specificity of diagnostic criteria (American Psychiatric Associa-
tion, 2013), the hope that some (potentially complex) patterns of
brain features may be unique to the disorder is not unreasonable
and worthy of pursuit.

Issues of heterogeneity and cohort effects can be partially addressed
through theuse of large samples, as provided by the recentAutismBrain
Imaging Data Exchange (ABIDE) (Di Martino et al., 2014), which incor-
porates over 1100 resting state functional MRI (rs-fMRI) datasets from
17 sites. The use of these data for examining functional connectivityma-
trices for large numbers of ROIs across the entire brain is further prom-
ising, as there is growing consensus about ASD being characterized by
aberrant connectivity in numerous functional brain networks (Schipul
et al., 2011; Vissers et al., 2012; Wass, 2011). However, the functional
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connectivity literature in ASD is complex and often inconsistent (Müller
et al., 2011; Nair et al., 2014), and data-driven machine learning (ML)
techniques provide valuable exploratory tools for uncovering potential-
ly unexpected patterns of aberrant connectivity that may characterize
the disorder.

A fewprevious ASD studies have used intrinsic functional connectiv-
ity MRI (fcMRI) (Van Dijk et al., 2010) for diagnostic classification,
i.e., for determiningwhether a dataset is from anASD or typically devel-
oping participant solely based on functional connectivity. Anderson and
colleagues (2011), using a large fcMRI connectivity matrix, reached an
overall diagnostic classification accuracy of 79%, which was however
lower in a separate small replication sample. Uddin et al. (2013a) used
a logistic regression classifier for 10 rs-fMRI based features identified
by ICA, which corresponded to previously described functional net-
works. The classifier achieved accuracies about 60–70% for all but one
component identified as salience network, for which accuracy reached
77%. Imperfect accuracy in these studies may be attributed to moderate
sample sizes (N ≤ 80). However, in a recent classification study using the
much larger ABIDE dataset, Nielsen et al. (2013) reported an overall ac-
curacy of only 60%, suggesting that the approach selected, a leave-one-
out classifier using a general linear model, may not be sufficiently
powerful.

In the present study, we implemented several multivariate learning
methods, including random forest (RF), which is an ensemble learning
method that operates by constructing many individual decision trees,
known in the literature as classification and regression trees (CART).
Each decision tree in the forest makes a classification based on a boot-
strap sample of the data and a random subset of the input features.
The forest as a whole makes a prediction based on the majority vote
of the trees. One desirable feature of the random forest algorithm is
the bootstrapping of the sample to have a built-in training and valida-
tionmechanism, generating anunbiased out-of-bag error thatmeasures
the predictive power of the forest. Features were intrinsic functional
connectivities (Van Dijk et al., 2010) between a standard set of regions
of interest using only highest quality (lowmotion) datasets fromABIDE.

2. Methods and materials

Data were selected from the Autism Brain Imaging Data Exchange
(ABIDE, http://fcon_1000.projects.nitrc.org/indi/abide/) (Di Martino
et al., 2013), a collection of over 1100 resting-state scans from 17 differ-
ent sites. In view of the sensitivity of intrinsic fcMRI analyses to motion
artifacts and noise (as described below),we prioritized data quality over
sample size. We excluded any datasets exhibiting artifacts, signal drop-
out, suboptimal registration or standardization, or excessive motion
(see details below). Sites acquiring fewer than 150 timepointswere fur-
ther excluded. Based on these criteria, we selected a subsample of 252
participants with low head motion (see details below). Groups were
matched on age and motion to yield a final sample of 126 TD and 126
ASD participants, ranging in age from 6 to 36 years (see Table 1 for sum-
mary and see Inline Supplementary Table S1 for fully detailed partici-
pant and site information).

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2015.04.002.

2.1. Data preprocessing

Data were processed using the Analysis of Functional NeuroImages
software (Cox, 1996) (http://afni.nimh.nih.gov) and FSL 5.0 (Smith
et al., 2004) (http://www.fmrib.ox.ac.uk/fsl). Functional images were
slice-time corrected, motion corrected to align to the middle time
point, field-map corrected and aligned to the anatomical images using
FLIRT with six degrees of freedom. FSL3s nonlinear registration tool
(FNIRT) was used to standardize images to the MNI152 standard
image (3 mm isotropic) using sinc interpolation. The outputs were
blurred to a global full-width-at-half-maximum of 6 mm. Given recent
concerns that traditional filtering approaches can cause rippling of mo-
tion confounds to neighboring time points (Carp, 2013), we used a
second-order band-pass Butterworth filter (Power et al., 2013;
Satterthwaite et al., 2013) to isolate low-frequency BOLD fluctuations
(.008 b f b .08 Hz) (Cordes et al., 2001).

Regression of 17 nuisance variables was performed to improve data
quality (Satterthwaite et al., 2013). Nuisance regressors included six
rigid-body motion parameters derived from motion correction and
their derivatives. White matter and ventricular masks were created at
the participant level using FSL3s image segmentation (Zhang et al.,
2001) and trimmed to avoid partial-volume effects. An average time se-
ries was extracted from each mask and was removed using regression,
along with its corresponding derivative. Whole-brain global signal
was also included as a regressor to mitigate cross-site variability
(Power et al., 2014). All nuisance regressors were band-pass filtered
using the second-order Butterworth filter (.008 b f b .08 Hz) (Power
et al., 2013; Satterthwaite et al., 2013).

2.2. Motion

Motion was quantified as the Euclidean distance between consecu-
tive time points (based on detected six rigid-body motion parameters).
For any instance greater than 0.25 mm, considered excessive motion,
the time point as well as the preceding and following time points
were censored, or “scrubbed” (Power et al., 2012a). If two censored
time points occurred within ten time points of each other, all time
points between them were also censored. Datasets with fewer than
90% of time points or less than 150 total time points remaining after
censoring were excluded from the analysis. Runs were then truncated
at the point where 150 usable time points were reached. Motion over
the truncated run was summarized for each participant as the average
Euclidean distance moved between time points (including areas that
were censored) and was well matched between groups (p = 0.92).

2.3. ROIs and connectivity matrix

Weused 220 ROIs (10mmspheres) adopted fromameta-analysis of
functional imaging studies by Power et al. (2011), excluding 44 of their
264 ROIs because of missing signal in N2 participants. Mean time
courseswere extracted from each ROI and a 220× 220 connectivityma-
trix of Fisher-transformed Pearson correlation coefficients was created
for each subject. We then concatenated each subject3s functional con-
nectivities to construct a group level data matrix. For each ROI pair,
we regressed out age (as numerical) and site (as categorical) covariates

Table 1
Participant information.

Full sample ASD, M ± SD [range, #391] TD, M ± SD [range, #391] p-Value (2-sample t-test)

N (female) 126 (18) 126 (31)
Age (years) 17.311 ± 6.00 [8.2–35.7] 17.116 ± 5.700 [6.5–34] 0.800
Motion (mm) .057 ± .020 [.018–.108] .058 ± .020 [.020–.125] 0.923
Non-verbal IQ 106.86 ± 17.0 [37–149] 106.28 ± 12.8 [67–155] 0.800
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