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Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer3s disease
(AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically
investigated howmethods of graph creation (i.e., type of correlationmatrix and edgeweighting) affect structural
network properties and group differences. We estimated the structural connectivity of brain networks based on
correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal
older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least
3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive
MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length
and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated
by the Randić index, which measures the degree to which highly connected nodes connect to other highly con-
nected nodes. The Randić index differentiated the stable and progressiveMCI groups, suggesting that it might be
useful for tracking and predicting the progression of AD. Notably, however, themagnitude and direction of group
differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to
take into account how graphs are constructed when interpreting differences across diagnostic groups and stud-
ies. The algebraic connectivity measures showed few group differences, independent of the method of graph
construction, suggesting that global connectivity as it relates to node degree is not altered in early AD.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Graph theory, a branch of mathematics, is increasingly being used to
study the connectivity properties of structural and functional brain
networks in individuals across the spectrum of Alzheimer3s disease
(AD) (for reviews, see Griffa et al., 2013; Tijms et al., 2013b). These in-
vestigations have been partially motivated by the finding that AD is
characterized by changes in brain connectivity resulting from synaptic
dysfunction and loss (Brickman et al., 2009; D3Amelio and Rossini,
2012; Scheff et al., 2011; Scheff and Price, 2006; Selkoe, 2002), as well

as neuronal loss and global atrophy (Braak and Braak, 1991; Gomez-
Isla et al., 1996; Kordower et al., 2001; Whitwell et al., 2012). In fact,
the progressive synaptic and neural degeneration across the continuum
of AD has led to the proposal that AD may be considered a ‘disconnec-
tion syndrome’ (for a review, see Delbeuck et al., 2003), whereby the
normal functional and structural connectivity of the brain becomes in-
creasingly disturbed. Although the precisemechanisms underlyingneu-
ronal injury in AD are unclear, it is hypothesized to result from the
aggregation of β-amyloid and tau (Fein et al., 2008; Henkins et al.,
2012; Takahashi et al., 2010), the two neuropathological hallmarks of
AD.

Graph theory provides a set of tools that can be used to quantify the
connectivity patterns of complex networks. In this framework, ‘nodes’
represent brain regions and ‘edges’ the network connections between
them. Based on the number and distribution of the edges, a variety of
measures can be computed to describe global and local connectivity
properties (for an overview, see Rubinov and Sporns, 2010). The appli-
cation of graph theory to the study of AD is appealing because AD
pathology progresses throughout the brain in an orderly fashion
(Braak and Braak, 1991), suggesting that connectivity properties may
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also change in an ordered manner over the course of the disease and
may have diagnostic and prognostic utility.

Prior graph theoretic studies of AD dementia and Mild Cognitive
Impairment (MCI) have used a variety of methods, including structural
MRI (He et al., 2008; Li et al., 2012; Tijms et al., 2013a, 2014; Yao et al.,
2010) and diffusion tensor imaging (DTI) (Bai et al., 2012; Lo et al.,
2010; Shu et al., 2012; Sun et al., 2014) to study anatomic connectivity,
as well as resting state functional MRI (rsfMRI) (Sanz-Arigita et al.,
2010; Sun et al., 2014; Supekar et al., 2008; Zhao et al., 2012), electroen-
cephalography (EEG) (de Haan et al., 2009; Stam et al., 2007), and
magneto-encephalography (MEG) (de Haan et al., 2012a; Stam et al.,
2009) to study functional connectivity. Although there is agreement
among these studies that AD dementia and Mild Cognitive Impairment
are associated with changes in network properties, there is surprisingly
little agreement about the nature of these changes. For example, incon-
sistent results have been reported for the two metrics that have been
most frequently examined: characteristic path length, a measure of
the average network distance between regions, and the clustering coef-
ficient, ameasure of local interconnectivity. Some studies have reported
increases in the clustering coefficient as a function of disease severity
(He et al., 2008; Yao et al., 2010; Zhao et al., 2012), others have reported
a decrease (Li et al., 2012; Stam et al., 2009; Sun et al., 2014; Tijms et al.,
2013a) and still others found no difference (Bai et al., 2012; Lo et al.,
2010; Sanz-Arigita et al., 2010; Stam et al., 2007). Likewise, for the char-
acteristic path length, AD-related increases (Bai et al., 2012; He et al.,
2008; Lo et al., 2010; Shu et al., 2012; Yao et al., 2010; Zhao et al.,
2012) and decreases have been reported (Sanz-Arigita et al., 2010;
Tijms et al., 2013a, 2014).

While some of the variability in prior findings likely reflects differ-
ences in the underlying biological substrates of the networks
(e.g., white matter fiber track networks, cortical thickness networks,
or resting state functional networks), part of the inconsistency may
also reflect methodological differences in network creation. For exam-
ple, some studies used binary edges, whereby the strength of all connec-
tions is weighted equally (He et al., 2008; Li et al., 2012; Shu et al., 2012;
Stam et al., 2007; Supekar et al., 2008; Tijms et al., 2013a; Yao et al.,
2010), while others have used weighted edges, meaning that connec-
tions can differ in strength (Bai et al., 2012; Lo et al., 2010; Stam et al.,
2009; Sun et al., 2014). Additionally, different methods have been
used to construct the correlation matrix (or adjacency matrix) that is
used to determine the presence of an edge, such as ordinary Pearson
correlations (e.g., Li et al., 2012; Sun et al., 2014; Tijms et al., 2013a,
2014; Yao et al., 2010), partial correlations (e.g., He et al., 2008; Zhao
et al., 2012), or synchronization likelihood for functional connectivity
data (e.g., de Haan et al., 2012a; Sanz-Arigita et al., 2010; Stam et al.,
2007). Although it has been documented that different methods of
edge creation can alter the topological properties of brain graphs
(e.g., Liang et al., 2012; Van Schependom et al., 2014), prior studies of
AD have each used only onemethod of network creation and it remains
unclear how different methods influence the magnitude and direction
of topological differences between cognitively normal individuals, indi-
viduals with MCI, and patients with AD-dementia.

The first aim of the current study is to address this issue for one im-
aging modality, structural MRI, by investigating how cortical thickness
(CT) networks differ across the spectrum of AD as a function of the
type of correlation matrix andmethod of edge weighting. Positive, neg-
ative, and absolute correlations were examined separately (see Gong
et al., 2012), resulting in 24 different graphs that were compared. Con-
sistent with prior studies, characteristic path length and the clustering
coefficient were examined. The second aim is to investigate three
graph measures that have received little or no attention in the study
of AD: (1) the Randić index, a measure of assortativity, or the tendency
of similar nodes to connect to one another (Randić, 1975), (2) the Fied-
ler value, also knownas algebraic connectivity, a graph spectralmeasure
that contains information about the global connectivity of a network (de
Haan et al., 2012b; Fiedler, 1973), and (3) the normalized Fiedler value,

which is similar to the Fiedler value, but normalized for the number of
edges in a graph (Chung, 1997). These measures are all indices of global
connectivity (for a review, see Kincaid and Phillips, 2011), which we
hypothesized would be affected in AD. Lastly, to our knowledge, prior
studies have not examined the utility of graph theoretic measures to
predict the progression of AD. Therefore, the third aim of this study is
to examine the predictive utility graph measures for differentiating
patients with stable and progressive MCI, based on their CT networks
obtained at baseline.

2. Methods

2.1. Subjects

All subjects in this studywere selected from the Alzheimer3s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/).
We analyzed data available as of May 2013. ADNI is a comprehensive,
multisite longitudinal study designed to identify biomarkers to predict
the progression of MCI and AD. It was launched in 2003 as a public–pri-
vate partnership. The MRI data used in this study was obtained at base-
line from subjects enrolled in the initial phase (ADNI-1). Study subjects
gavewritten informed consent at enrollment for data collection, storage
and use for research. Each participating institution3s Institutional Re-
view Board approved the study. The data were anonymized before
being made publicly available. At baseline, subjects were medically sta-
ble, free from significant neurological and psychiatric conditions, and
did not have significant cerebrovascular risk factors. For additional in-
formation about ADNI, including data collection and full inclusion and
exclusion criteria, see http://www.adni-info.org.

Data from four groups of subjects were included in the current study:
127 individuals who were cognitively normal at baseline and remained
cognitively normal for at least 3 years (stable normal group); 104 indi-
viduals diagnosed with MCI at baseline who retained a diagnosis of
MCI for at least 3 years (stable MCI group); 106 individuals who were
diagnosed with MCI at baseline and progressed to AD-dementia within
3 years; and 108 participants with a baseline diagnosis of AD-dementia.
All participants had anMRI scan at their baseline visit and were admin-
istered the Clinical Dementia Rating (CDR) scale (Morris, 1993). The
baseline CDR score was 0 for the cognitively normal group, 0.5 for the
stable and progressive MCI groups and 0.5–1 for AD-dementia group.
See Table 1 for participant characteristics at baseline. One-way analyses
of variance (ANOVAs) indicated that there was no age difference across
diagnostic groups (p N 0.6), but that education differed between groups
(F= 7.45, p b 0.0001), such that patients with AD-dementia had fewer
years of education than the other three groups (all p b 0.003). A chi-
square test indicated that the distribution of males and females also dif-
fered across diagnostic groups, with significantly fewer females in the
Stable MCI group than in the normal and AD-dementia groups (both
p b 0.05). To remove any effects of age, gender, and education on the
resulting CT graphs, we controlled for these variables as described
below.

2.2. MRI data acquisition and cortical thickness reconstructions

Standard T1-weightedMR images were acquired sagittally with dif-
ferent 1.5 T scanners using a three-dimensionalmagnetization prepared
rapid gradient-echo (MPRAGE) sequence varying in repetition time and
echo time with an in-plane resolution of 1.25 × 1.25 mm and 1.2 mm
slice thickness. Additional details about the MRI acquisition procedures
are available at the ADNI website (http://www.adni-info.org).

Cortical reconstruction and automated thickness measures were
performed using the Freesurfer software, version 5.1 (Fischl and Dale,
2000), which is documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu). Only images that passed a quality
review were included in the present analyses. Cortical thickness was
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