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Background & objective: Percent whole brain volume change (PBVC) measured from serial MRI scans is widely
accepted as a sensitive marker of disease progression in Alzheimer3s disease (AD). However, the utility of PBVC
in the differential diagnosis of dementia remains to be established. We compared PBVC in AD and dementia
with Lewy bodies (DLB), and investigated associations with clinical measures.
Methods: 72 participants (14 DLBs, 25 ADs, and 33 healthy controls (HCs)) underwent clinical assessment and
3 Tesla T1-weighted MRI at baseline and repeated at 12 months. We used FSL-SIENA to estimate PBVC for each
subject. Voxelwise analyses and ANCOVA compared PBVC between DLB and AD, while correlational tests exam-
ined associations of PBVC with clinical measures.
Results: AD had significantly greater atrophy over 1 year (1.8%) compared to DLB (1.0%; p = 0.01) and HC (0.9%;
p b 0.01) in widespread regions of the brain including periventricular areas. PBVC was not significantly different
betweenDLB andHC (p=0.95). Therewere nodifferences in cognitive decline betweenDLB andAD. In the com-
bined dementia group (AD and DLB), younger age was associated with higher atrophy rates (r = 0.49, p b 0.01).
Conclusions: AD showed a faster rate of global brain atrophy compared to DLB, which had similar rates of atrophy
to HC. Among dementia subjects, younger age was associated with accelerated atrophy, reflecting more aggres-
sive disease in younger people. PBVC could aid in differentiating between DLB and AD, however its utility as an
outcome marker in DLB is limited.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dementia with Lewy bodies (DLB) is the second leading cause of de-
generative dementia in older people after Alzheimer3s disease (AD), ac-
counting for up to 15% of cases confirmed at autopsy (McKeith et al.,
1996). DLB shares common clinical, neuropsychological and pathologi-
cal features with other dementia subtypes such as AD and Parkinson3s
disease with dementia, making differentiation between these disorders
challenging. Despite the development of consensus diagnostic criteria,
the sensitivity for differential diagnosis of DLB in clinical practice re-
mains low and many DLB patients could be misdiagnosed. In light of

this uncertainty, and with important implications for subsequent pa-
tient management, there is growing emphasis on the development of
reliable imaging markers to help distinguish DLB from other subtypes
of dementia.

The majority of imaging studies in AD and DLB have been cross-
sectional, while there has been a paucity of longitudinal studies in DLB
(O3Brien et al., 2001;Whitwell et al., 2007), whichmight bemore sensi-
tive to detect early pathological changes thanmeasurements at a single
time point (Smith et al., 2007). Furthermore, a longitudinal design can
reduce the confounding effect of inter-individual morphological vari-
ability as each subject serves as his or her own control. The rate of
whole brain atrophy on serial MRI is increasingly recognized as a sensi-
tive and objective marker of disease progression in neurodegenerative
diseases (Fox and Freeborough, 1997). Reported whole brain atrophy
rates in AD range from 1% to 4% per year (Cover et al., 2011), while atro-
phy rates in similarly aged non-demented people range from 0.3% to
0.7% per year (Cover et al., 2011; Henneman et al., 2009; Sluimer
et al., 2008). As such, longitudinal assessment of brain atrophy in
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different subtypes of dementia andhealthy controlsmay allowus to dis-
tinguish pathological rates of brain atrophy from normal age-related
changes. The clinical relevance of atrophy rates has been supported by
previous studies showing the relationship with cognitive dysfunctions
(Sluimer et al., 2008). In light of this evidence, global atrophy rates are
used as a secondary outcome marker in phase III trials of potentially
disease-modifying interventions in AD (Frisoni et al., 2010).

Previous studies using serial MRI to investigate atrophy rates in DLB
have yielded conflicting findings, with some studies showing similar
rates in subjectswith DLB and AD (O3Brien et al., 2001), while slower at-
rophy rates in DLB have been reported (Whitwell et al., 2007). Thus, the
clinical implications of whole brain atrophy rates in DLB remain poorly
understood, and further studies are warranted.

The aims of the present study were to use serial MRI to investigate
whole brain atrophy rates over a 12-month period in clinically diag-
nosed subjects with AD and DLB, and similarly aged HC, as well as to in-
vestigate the associations between percent brain volume change
(PBVC) and clinical measures. Based on earlier cross-sectional findings
of reduced whole brain atrophy and relative structural preservation of
the medial temporal lobes (Mak et al., 2014; R. Watson et al., 2012a),
we hypothesized that subjects with DLB would have significantly
lower rates of whole brain atrophy compared to AD.

2. Methods

2.1. Subjects, assessment and diagnosis

At baseline, seventy one subjects with dementia over the age of 60
(36 subjectswith probable AD (McKhannet al., 1984) and 35with prob-
able DLB (McKeith et al., 2005)) were recruited from a community
dwelling population of patients referred to local Old Age Psychiatry, Ge-
riatric Medicine or Neurology Services in the North East of England, UK,
as previously described (R. Watson et al., 2012a). Consensus on diagno-
sis wasmade with 3 experienced clinicians. Subjects underwent clinical
and neuropsychological evaluations at baseline and follow-up at 1 year.
Thirty-five similarly aged control subjects were recruited from relatives
and friends of subjects with dementia or volunteered via advertise-
ments in local community newsletters.

For the purpose of the present study, we included only subjects with
MRI assessments from both baseline and 1-year follow-up. Of the 36 AD
subjects, 25 were included after 11 were unable to participate in the
follow-up assessment. Of the 35 DLB subjects, 14 were included after
12 declined to participate as they or their carers felt they were too un-
well and 9 subjects had died. Half the DLB subjects (n = 7) had abnor-
mal dopamine transporter scans as part of the clinical work-up before
entering the study. Of the 35 HC subjects, 33 were included in the pres-
ent analyses after 2 declined to participate due to other reasons. The re-
search was approved by the local ethics committee. All subjects or,
where appropriate, their nearest relative, provided written informed
consent. Assessment of global cognitive measures at both baseline and
follow-up assessments, included the Cambridge Cognitive Examination
(CAMCOG) (Huppert et al., 1995), which incorporates the Mini-Mental
State Examination (MMSE) (Folstein et al., 1975). Motor parkinsonism
was evaluated with the Unified Parkinson3s Disease Rating Scale Part
III (UPDRS-III) (Movement Disorder Society Task Force on Rating
Scales for Parkinson3s Disease, 2003). For subjects with dementia, neu-
ropsychiatric featureswere examinedwith the Neuropsychiatric Inven-
tory (Cummings et al., 1994), and cognitive fluctuations were assessed
with the cognitive fluctuation scale (Walker et al., 2000).

2.2. MRI acquisition

Subjects underwent both baseline and repeatMR imagingwith a 12-
month interval. At each time point, subjects underwent T1 weighted
MR scanning on the same 3 T MRI system using an 8 channel head

coil (Intera Achieva scanner, Philips Medical Systems, Eindhoven,
Netherlands) within 2 months of the clinical assessments as previously
described (R. Watson et al., 2012a). The sequence was a standard
T1 weighted volumetric sequence covering the whole brain (3D
MPRAGE, sagittal acquisition, 1 mm isotropic resolution and matrix
size of 240 (anterior–posterior) × 240 (superior–inferior) × 180
(right–left); repetition time (TR) = 9.6 ms; echo time (TE) = 4.6 ms;
flip angle= 8°; SENSE factor= 2). The acquired volumewas angulated
such that the axial slice orientation was standardized to align with the
AC–PC line.

2.3. Image analysis

2.3.1. Estimation of whole brain atrophy rate
Whole brain atrophy rate was estimated with SIENA (Smith et al.,

2001), part of the FSL software package (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/). Firstly, brain extraction was performed in acquired images at
both of the two time points (Smith et al., 2002). For each individual sub-
ject, the baseline and follow-up brain imageswere aligned to each other
(Jenkinson and Smith, 2001) using the skull images to constrain the reg-
istration scaling, and both brain images were then resampled into the
space halfway. Next, tissue-type segmentation was carried out (Zhang
et al., 2001) in order to find brain/non-brain edge points, and then per-
pendicular edge displacement (between the two time points) was esti-
mated at these edge points. Finally, the mean edge displacement across
the whole brain was converted into a global estimate of PBVC between
the two time-points.

2.3.2. Voxel-wise assessment of atrophy over time
Next, we performed a voxelwise statistical analysis of atrophy across

subjects using SIENAr, an extension of SIENA from the FSL package
(Bartsch et al., 2004). Built upon the result of the previous SIENA analy-
sis, the edge displacement image was dilated for each subject, trans-
formed into MNI152 space, and masked by a standard MNI152-space
brain edge image. In this way the edge displacement values were
warped onto the standard brain edge. Next, voxelwise statistical analy-
sis was performed on the resulting images from all subjects to test for
significant differences in atrophy over time among the AD, DLB and
HC groups. In all voxelwise comparisons, age and gender were included
as covariates in the General Linear Model (GLM). The threshold free
cluster enhancement (TCFE) algorithm (Nichols and Holmes, 2002)
was used to correct for multiple comparisons across the whole brain
at p b 0.05 based on permutation testing (5000 permutations for each
contrast in order to build an empirically derived null distribution
against which to compare observed effects). The anatomical locations
of the significant cortical GM clusters were determined by using the
standard Harvard–Oxford cortical structural atlas (see http://www.
fmrib.ox.ac.uk/fsl/) containing 48 regions for each hemisphere.

2.4. Statistical analysis

Statistical analyseswere performedwith the STATA13 (http://www.
stata.com) software. The distribution of continuous variables was tested
for normality using the Skewness–Kurtosis test and visual inspection of
histograms. Parametric data were assessed using either t-tests or analy-
sis of variance (ANOVA) for continuous variables. For non-parametric
data, Kruskal–Wallis was used. χ2 tests were used to examine differ-
ences between categorical measures. Group effects in PBVCwere tested
with analysis of covariance (ANCOVA) controlling for age and gender,
followed by post-hoc comparisons using the Tukey–Kramer tests.
Associations of PBVC with clinical measures were evaluated with
Spearman3s rank order correlation coefficient or Pearson3s correlations
depending on the distribution of the data. These correlational tests
were further adjusted by applying Bonferroni correction for multiple
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